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Optimizing Resource Allocation for Joint AI Model Training and
Task Inference in Edge Intelligence Systems

Xian Li , Member, IEEE, Suzhi Bi , Senior Member, IEEE, and Hui Wang

Abstract—This letter considers an edge intelligence system
where multiple end users (EUs) collaboratively train an artifi-
cial intelligence (AI) model under the coordination of an edge
server (ES) and the ES in return assists the AI inference task
computation of EUs. Aiming at minimizing the energy consump-
tion and execution latency of the EUs, we jointly consider the
model training and task inference processes to optimize the local
CPU frequency and task splitting ratio (i.e., the portion of task
executed at the ES) of each EU, and the system bandwidth allo-
cation. In particular, each task splitting ratio is correlated to a
binary decision that represents whether downloading the trained
AI model for local task inference. The problem is formulated as a
hard mixed integer non-linear programming (MINLP). To tackle
the combinatorial binary decisions, we propose a decomposition-
oriented method by leveraging the ADMM (alternating direction
method of multipliers) technique, whereby the primal MINLP
problem is decomposed into multiple parallel sub-problems that
can be efficiently handled. The proposed method enjoys linear
complexity with the network size and simulation results show that
it achieves near-optimal performance (less than 3.18% optimality
gap), which significantly outperforms the considered benchmark
algorithms.

Index Terms—Edge intelligence, distributed training, resource
allocation, alternating direction method of multipliers.

I. INTRODUCTION

AS A SEAMLESS integration of mobile edge computing
(MEC) and artificial intelligence (AI), edge intelligence

(EI) has grabbed the limelight from both the academia and
industry [1]. Via pushing AI model training and inference
towards network edges, EI is widely recognized as a promising
technology to enable various computation-intensive, latency-
critical, and privacy-sensitive mobile AI applications [2].

With the recent advance in distributed training techniques in
EI system (e.g., federated learning [3]), end users (EUs) col-
laboratively train the parameters of a common AI model under
the coordination of an edge server (ES). Rather than aggre-
gating all the raw training data to a center unit, distributed
learning technique allows the EUs and ES to exchange only
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the AI model parameters during training, which preserves EUs
privacy and avoids prohibitive communication cost on massive
raw data delivering. Once the training is complete, the up-to-
date AI model can be used for processing the corresponding
inference tasks of the EUs, e.g., image recognition. In par-
ticular, it has been shown in extensive studies that the EUs
can benefit from parallel executions of computation-intensive
inference tasks via task-splitting among EUs and ES, i.e.,
following the partial computation offloading policy [4]. In
this case, the existing studies (e.g., [4]–[6]) mainly focus on
jointly optimizing the task splitting ratios and system resource
allocation to enhance the computation performance.

The above works share a common yet implicit assumption
that the service program is always available upon task exe-
cution at all computing devices (ES and the EUs). However,
in an EI system under dynamic computing environment, to
avoid model degradation over time, the AI models often
require to be regularly retrained and updated either period-
ically when sufficient new data samples are gathered at the
EUs or upon significant change of environment [7]. As a result,
some tasks that require high inference accuracy (e.g., recog-
nizing images generated in new settings) can be processed
only after the recent training process is complete. Besides
the causal relationship, the training and inference processes
share the common system resource (e.g., limited bandwidth for
model/task data transmission), thus should be jointly treated to
minimize the overall cost. In a multiuser EI system, existing
studies on resource allocation mostly investigate the training
(e.g., [8], [9]) and inference processes (e.g., [4]–[6], [10], [11])
separately, while the joint design problem, to the best of our
knowledge, is currently lacking of concrete study. The major
difficulty lies in the resource sharing not only between the
dependent training and inference processes, but also among the
operations of interdependent and heterogeneous EUs in each
process, featured by their dissimilar inference task volume,
hardware capabilities, and wireless channel conditions, etc.

In this letter, we study the optimal resource allocation
problem for joint AI model training and task inference in a
multi-user EI system. In particular, we consider that the system
conducts on-device federated learning to iteratively train an AI
model, and later uses the trained model to process inference
tasks of the EUs. We aim to minimize the weighted summa-
tion of energy consumption and execution latency (WSEL) of
all EUs in completing their training/computation tasks. The
problem involves optimizing not only the computation task
splitting ratio of each individual EU, but also the system-
level bandwidth allocation on transmitting the AI model and
user task data. In particular, each task splitting ratio is corre-
lated to a binary decision that represents whether downloading
the trained AI model for local task inference. The problem is
formulated as a hard MINLP, where we handle the intractabil-
ity by an efficient decomposition-oriented method leveraging
the ADMM (alternating direction method of multipliers) tech-
nique. Finally, we conduct numerical simulations and show
that the proposed joint optimization achieves a near-optimal
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Fig. 1. An example of the system operation.

performance that considerably reduces the WSEL compared
to the considered benchmark algorithms, e.g., allocating ded-
icated bandwidth for AI model transmissions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

In this letter, we consider an EI system composing of one
ES and M EUs that regularly update an AI model for executing
a certain type of computation task. Let M be the set of EUs.
Upon receiving the model update request from the ES, the
EUs first download the most recent AI model from the ES, and
then collaboratively retrain the AI model following the feder-
ated learning approach through N fixed training iterations. In
each training iteration, EUs process their local training sam-
ples and transmit to the ES their local model parameter updates
(MPUs). The ES aggregates the received MPUs into a new AI
model and transmits it back to EUs for generating MPUs in
the next iteration [9]. To achieve high inference accuracy, we
consider that the EUs perform only model training in the first
N − 1 iterations, while both training and inference in the N-
th iteration, such that the inference tasks are processed by the
most up-to-date AI model. For the task inference in the N-
th iteration, we adopt a partial offloading policy that an EU
can arbitrarily partition its inference task data with one part
computed locally and the other offloaded to the ES for edge
computation [4].1 Notice that an EU needs to download the
AI model only if it processes some of its task locally, while
those fully rely on the ES for edge inference do not. To avoid
co-channel interference, the EUs are allocated with orthogo-
nal sub-channels in the uplink and downlink communications.
With separate circuits, the EUs and the ES can perform task
computation and data communication simultaneously.

An example operation of the training and inference process
with M = 2 is shown in Fig. 1, where the first EU has its
task processed both locally and at the ES, while the second
one performs edge inference only. In the n-th (1 ≤ n < N)
iteration, both EUs first perform local model training, followed
by local MPU uploading, where the delays are denoted by τ lt

j ,n
and τmu

j ,n , respectively. We assume the local model training is
operated over a preset numbers of local iterations with a fixed
CPU frequency, such that the delay τ lt

j ,n and energy consump-

tion (denoted as e lt
j ,n ) are known constant. We assume that the

ES adopts the synchronous model aggregation approach [12],
which updates the AI model after receiving the MPUs from
both EUs. For simplicity, we neglect the model aggregation
delay and denote the time that the ES finishes updating the AI
model as τ̂n . Then, each EU downloads the updated model
for a duration denoted by τmd

j ,n , and retrains the model in the

1It is worth noting that the privacy of the training data at users is generally
not affected by the following inference process. For simplicity, we assume
that the inference task data does not contain privacy-sensitive contents, such
that an arbitrary part of the task can be offloaded.

(n + 1)-th iteration. In the N-th iteration, after local train-
ing and MPU uploading, the two EUs start offloading their
task data to the ES for edge inference, taking τ to

1,N and τ to
2,N

amount of time, respectively. The first EU starts download-
ing the model from time instant τ̂N for a duration τmd

1,N ,
with which it performs local inference with duration τc

1,N .
Meanwhile, the ES starts computing the task of EU j for a
duration of τe

j ,N once its task data is completely received (e.g.,
from the time instant τ

pr
j for EU j), where j = 1, 2.

In this letter, we optimize the system performance in each
iteration. We first focus on formulating the resource allocation
problem in the N-th iteration and later show that the problem
in iteration n ∈ [1,N − 1] is a special case.

B. Problem Formulation

We denote the task data size of the j-th EU as Lj in bits,
where ιjLj -bits (0 ≤ ιj ≤ 1) data is offloaded to the ES for
edge computing, and the rest (1− ιj )Lj -bits data is computed
locally. Denote C as the required CPU cycles to process one
bit of data. Then, the computation time and the corresponding
energy consumption of local computing can be given as [5]

τc
j ,N = C (1 − ιj )Lj /fj , ec

j ,N = κcf 2
j C (1 − ιj )Lj , (1)

respectively, where fj , constrained by the maximum value
fmax, is the local CPU frequency. κc is the energy effi-
ciency for local computing. Besides, the time spent on edge
computing on the ES side is

τe
j ,N = C ιjLj /fs, (2)

where fs is the fixed CPU frequency at the ES assigned to
process a task.

In the N-th iteration, we assume that EU j is allocated with
bjB dedicated bandwidth in its uplink communication, where
B is the total available bandwidth. We denote pj as the fixed
transmit power at EU j for transmitting its local MPU and task
data. Then, the achievable rate of the j-th UE is

rj = bj B log2

[
1 + pj hj /

(
bjBδ2

s

)]
, (3)

where hj is the channel power gain between the ES and the
j-th EU, and δ2

s is the noise power density at the ES side.
We assume for simplicity that the channel is reciprocal. Then,
the achievable data rate for fetching the aggregated AI model
from the ES to the j-th EU is

r̄j = b̄j B log2

[
1 + Pshj /

(
b̄j Bδ2

j

)]
, (4)

where b̄j B is the assigned downlink bandwidth. Ps is the fixed
transmit power of the ES, and δ2

j is the noise power density.
With the above communication models, the transmission

latency of MPU uploading, task offloading, and AI model
downloading can be given as

τmu
j ,N = Dm/rj , τ to

j ,N = ιj Lj /rj , τmd
j ,N = Dm/r̄j , (5)

respectively, where Dm is the data size of the AI model. Then,
the time that the AI model is globally updated at the ES is

τ̂N = max
{
τmd
j ,N−1 + τ lt

j ,N + τmu
j ,N ,∀j ∈ M

}
. (6)

Correspondingly, the energy costs on data transmissions are

emu
j ,N = pj τ

mu
j ,N , eto

j ,N = pj τ
to
j ,N , emd

j = pmd
j τmd

j ,N , (7)

respectively, where pmd
j in Joule/bit is a constant representing

the receiver circuit power at the j-th EU.
We consider that the ES has stable power supply and focus

only on the energy consumption of the EUs. Let aj ∈ {0, 1} be
the model download decision of the j-th EU (i.e., aj = 1 if the
j-th EU downloads the aggregated AI model, otherwise aj =
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0). Since an EU downloads the model only when performing
local task processing, we have that aj = 1 when 0 ≤ ιj < 1
and aj = 0 when ιj = 1. Then, the total energy consumption
of an EU j ∈ M in the N-th iteration can be written as

Ej ,N = e lt
j ,N + emu

j ,N + eto
j ,N + aj

(
emd
j ,N + ec

j ,N

)
. (8)

Correspondingly, the execution latency is

Tj ,N = max
{
aj

(
τ̂N +τmd

j ,N +τc
j ,N

)
, τpr

j +τe
j ,N

}−τmd
j ,N−1, (9)

where τpr
j = max{τ̂N , τmd

j ,N−1 + τ lt
j ,N + τmu

j ,N + τ to
j ,N } denotes

the time that both the AI model and task data are ready for
processing the task of EU j. Notice that τmd

j ,N−1 is known from
the (N − 1)-th iteration.

In this letter, we are interested in minimizing the WSEL of
the considered system, which is a commonly used metric to
jointly evaluate the system performance on energy and latency
cost [11]. Notice that minimizing WSEL can also alleviates the
negative impact of the energy and latency cost induced by the
communication overhead of federated learning during model
training. Specifically, we solve

min
b,a ,ι,f ,
τ ,T ,τ̂N

∑
j∈M

(
we

j Ej ,N + w t
j Tj ,N

)
(10a)

s.t.
∑

j∈M
(
bj + b̄j

)
≤ 1, bj , b̄j ≥ 0,∀j ∈ M, (10b)

0 ≤ fj ≤ fmax,∀j ∈ M, (10c)
{aj , ιj } ∈ Dj ,∀j ∈ M, (10d)
{τ̂N , τ ,T} ∈ T , (10e)

where b = {bj , b̄j }, a = {aj }, ι = {ιj }, f = {fj }.
τ = {τmu

j ,N , τ to
j ,N , τpr

j , τmd
j ,N }, T = {Tj ,N }, and j ∈ M. we

j

and w t
j denote the weighting factors of the energy consump-

tion and execution delay of the j-th EU, respectively. (10b)
is the constraints on bandwidth allocation. (10c) bounds the
local CPU frequency at EUs. In (10d) and (10e), Dj describes
the constraints on model download decision and task splitting
ratio, and T captures the feasible region of the time costs
{τ̂N , τ ,T}, both of which are detailed in (11) as shown at
the bottom of the page. By assigning a zero-bit task (i.e.,
Lj = 0) and enforcing model download (i.e., aj = 1) for
each EU, (10) turns out to be the optimization problem in the
preceding training iteration n ∈ [1,N − 1]. In this letter, we
focus on solving (10), while the optimization problems of the
first N − 1 iterations can be tackled in a similar and in fact
much easier way.

III. PROPOSED ADMM-BASED METHOD

The non-convex terms (e.g., ιj fj and ιj /fj ) and the binary
variables aj -s make (10) intractable. A potential method to
solve (10) is to fix ι and a, then the remaining problem is
convex and can be solved via off-the-shelf tools (e.g., interior
point method). The optimal {a , ι} can be found via enu-
merating all the

∏M
j=1 (Διj )

−1 possible combinations, where
Διj is a sufficiently small precision interval of lj . However,
when M becomes large, the exhaustive search on {a , ι} is
prohibitive. To deal with this problem, we propose an ADMM-
based method that decomposes the large-size MINLP into
parallel smaller and tractable sub-problems. We later show that
it enjoys linear computation complexity O(M).

To start with, we introduce auxiliary variables x = {xj },
y = {yj }, z = {zj }, where j ∈ M, and convert (10) into an
equivalent form as below:

min
u ,τ̂N

∑
j∈M

(
qj (uj ) + g(τ̂N , b)

)
(12a)

s.t. xj = bj , yj = τ̂N , zj = b̄j ,∀j ∈ M, (12b)
xj , yj , zj ≥ 0,∀j ∈ M, (12c)
(10c)-(10e), (12d)

where uj = {xj , yj , zj , aj , ιj , fj , τmu
j ,N , τ to

j ,N , τmd
j ,N , τpr

j ,Tj ,N }
and u = {uj , j ∈ M}. In the objective function (12a),
qj (uj ) = we

j Ej ,N + w t
j Tj ,N and

g(τ̂N , b) =
{

0, if {τ̂N , b} ∈ F , (13a)
+∞, otherwise, (13b)

where F = {τ̂N , b |
∑

j∈M(bj + b̄j ) ≤ 1; bj ≥ 0, b̄j ≥
0, ∀j ∈ M; τ̂N ≥ 0}. Let α = {αj }, β = {βj } and ζ =
{ζj }, ∀j ∈ M, be the Lagrangian multipliers associated with
constraints in (12b), and c be a fixed updating step size. Then,
we can write a partial augmented Lagrangian of (12) as

LA(u , v ,ω) =
∑

j∈M
qj (uj ) + g(v) +

∑

j∈M
αj

(
xj − bj

)

+
∑

j∈M
βj

(
yj − τ̂N

)
+

∑

j∈M
ζj

(
zj − b̄j

)
+

c
2

∑

j∈M

(
xj − bj

)2

+
c
2

∑

j∈M

(
yj − τ̂N

)2 +
c
2

∑

j∈M

(
zj − b̄j

)2
, (14)

where v = {τ̂N , b} and ω = {α,β, ζ}. Correspondingly, the
optimization of (12) are separated into two levels. In specific,
at the lower level, the dual function K (ω) is obtained via
solving the following optimization problem:

K (ω) = min
u ,v

LA(u , v ,ω), s.t. (12c), (10c)–(10e) . (15)

At the higher level, we solve the dual problem
max
ω≥0

K (ω). (16)

By leveraging the ADMM technique, we decompose (15)
into M parallel sub-problems and solve (16) via iteratively
updating u, v, and ω. Denote the values in the I-th iteration as
{uI , v I ,ωI }. Then, in the (I + 1)-th iteration, the ADMM-
based method runs as follows:

1) Step 1: Given {v I ,ωI }, we first update u by solving

uI+1 = arg min
u

LA(u , v I ,ωI ). (17)

Let S I (uj ) = qj (uj ) + αI
j xj + βI

j yj + ζI
j zj + c

2 [(xj − bI
j )2 +

(yj − τ̂ I
N )2 + (zj − b̄I

j )2]. Then, (17) is decomposed into M
parallel subproblems, each solving

uI+1
j = arg min

uj∈Uj

S I (uj ), s.t. (12c), (10c), (10d) . (18)

Here, Uj is the feasible set of uj , which is given by replacing
bj = xj , τ̂N = yj and b̄j = zj in T as in (11). Now that
aj is given in the current step, we further consider a fixed
lj , such that (10d) is removed from (18) and the problem
becomes a convex optimization problem that can be well
tackled. Subsequently, we update ιj for each EU using one-
dimensional search method (e.g., the golden-section search or

⎧
⎪⎪⎨

⎪⎪⎩

T =
{
Tj ,N , τ̂N , τmu

j ,N , τ to
j ,N , τmd

j , τ tp
j , ∀j ∈ M | Tj ,N ≥ aj

(
τ̂N +τmd

j ,N +C (1−ιj )Lj /fj

)
−τmd

j ,N−1,Tj ,N ≥ τpr
j +C ιjLj /fs−τmd

j ,N−1

τ̂N ≥ τmd
j ,N−1+τ lt

j ,N +τmu
j ,N , τpr

j ≥ τ̂N , τpr
j ≥ τmd

j ,N−1+τ lt
j ,N +τmu

j ,N +τ to
j ,N , τmu

j ,N ≥ Ds/rj , τ
to
j ,N ≥ ιjLj /rj , τ

md
j ,N ≥ Dm/r̄j

}

Dj = {aj , ιj | aj ∈ {0, 1}, 0 ≤ ιj ≤ 1, (1−aj )(1−ιj ) = 0} \ {aj = 1, ιj = 1}
(11)
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the data-driven-based search [13]). 2 Here, we provide below
some interesting properties of the optimal solutions of (18)
that can be used to simplify the algorithm design.

Proposition 1: For given ιj , the local CPU frequency of the
j-th EU at the optimum of (18) can be given as

fj = min
(

3

√
μj /(we

j 2κc), fmax

)
, (19)

where μj is a non-negative Lagrangian multiplier and min(·) is
the minimum operation. The corresponding execution latency
of the j-th EU at the optimum of (18) can be given as T ∗

j ,N =
T̂ ∗

j ,N −τmd
j ,N−1, where

T̂ ∗
j ,N=

{
yj + τmd

j ,N + C (1 − ιj )Lj /fj , if 0 ≤ ιj < 1, (20a)

τpr
j + CLj /fs, if lj = Lj . (20b)

Proof: Please refer to Appendix A.
Proposition 1 implies that, as long as some task data is

processed locally (i.e., ιj < 1), the local processing delay
dominates the edge processing delay. Accordingly, we can
remove the maximum operator in (9) and simplify the delay
expression to (19). Notice that the complexity of solving each
sub-problem (18) does not scale with the EU number, thus the
overall complexity of step 1 is O(M), i.e., proportional to the
number of sub-problems.

2) Step 2: With the obtained uI+1, we update v I+1 by
solving the following convex optimization problem:

min
{τ̂N ,b}∈F

∑
j∈M

[
αI
j

(
x I+1
j −bj

)
+βI

j

(
yI+1
j −τ̂N

)
+ζI

j

(
z I+1
j −b̄j

)]

+
c

2

∑
j∈M

[(
x I+1
j −bj

)2
+

(
yI+1
j −τ̂N

)2
+

(
z I+1
j −b̄j

)2]
. (21)

The optimal solution is in the following closed-form:

τ̂
∗
N =

1

M

∑

j∈M

(
y
I+1
j +

βI
j

c

)
, b

∗
j =

(
x
I+1
j +

αI
j −θ

c

)+
, b̄

∗
j =

(
z
I+1
j +

ζI
j −θ

c

)+
,

(22)

where j = 1, . . . ,M and (·)+ � max(·, 0). θ∗ is the optimal
dual variable associated with the bandwidth allocation con-
straint in F and can be obtained via a bi-section search. The
details are omitted due to the page limit. The complexity of
the bi-section search method to solve (21) is O(M).

3) Step 3: given uI+1 and v I+1, we update the multipliers
ωI using the sub-gradient method as below:

αI+1
j = αI

j + c
(
x I+1
j − bI+1

j

)
, j = 1, . . . ,M , (23a)

βI+1
j = βI

j + c
(
yI+1
j − τ̂ I+1

N

)
, j = 1, . . . ,M , (23b)

ζI+1
j = ζI

j + c
(
z I+1
j − b̄I+1

j

)
, j = 1, . . . ,M . (23c)

4) Finally, the iteration of the ADMM-based method stops
when the following two criteria are satisfied:

∑
j∈M

(∣∣x I+1
j −bI+1

j

∣
∣+

∣
∣yI+1

j −τ̂ I+1
N

∣
∣+

∣
∣z I+1

j −b̄I+1
j

∣
∣) ≤ ε1, (24a)

∑
j∈M

(∣∣bI
j −bI+1

j

∣
∣+

∣
∣b̄I

j −b̄I+1
j

∣
∣)+

∣
∣τ̂ I

N−τ̂ I+1
N

∣
∣ ≤ ε2, (24b)

where ε1 and ε2 denote the absolute tolerance and relative
tolerance [14], respectively. Otherwise, the (I + 2)-th iteration
continues from Step 1.

The complexity of step 3, and thus that of an ADMM
iteration of the first three steps is O(M). Besides, the M sub-
problems in step 1 can be computed in parallel to reduce
the computation time. Meanwhile, we observe through exten-
sive simulations that the number of ADMM iterations required

2In practice, the edge processing frequency fs could also be optimized to
further improve the system performance, which can be achieved with a tiny
modification in this step without incurring additional technical difficulty.

TABLE I
SIMULATION PARAMETERS

until convergence does not vary significantly with M (e.g., in
less than 40 – 60 iterations for any M ∈ [2, 12]), where the
result is omitted due to the page limit. Overall, the proposed
method enjoys a linear computation complexity, i.e., O(M),
which greatly reduces the computation time and makes the
primal problem (10) tractable even at a large M.

IV. SIMULATION RESULTS

In this section, we evaluate the system performance via
numerical simulations. We consider an EI system compris-
ing M = 4 EUs, deployed around the ES at an equal distance
dj = 50 m. We model the channel between the j-th EU and
the ES as a Rayleigh fading channel. Then, the correspond-
ing channel gain is hj = ς h̄j . Here, ς is an independent
exponential random variable of unit mean, which captures the
small-scale channel fading effect. h̄j denotes the average chan-

nel gain that follows a path-loss model h̄j = GA( 3×108

4πfcdj
)σ ,

where GA = 4.11 captures the total antenna gain, fc = 2.4
GHz represents the carrier frequency, and σ is the path-loss
exponent, respectively. We assume all EUs are identical in task
data bulk L, maximum transmit power pmax, receiver power
pmd, and weighting factors we and w t (here we drop the sub-
script ‘j’ for convenience). Without loss of generality, we set
τmd
j ,N−1 = τ lt

j ,N−1 = 1 s and e lt
j ,N−1 = 0.04 Joule, ∀j ∈ M.

The other parameters used in simulation are listed in Table I.
To verify the effectiveness of the proposed method, we

consider four representative benchmarks for comparison:
• Local computing only (LCO): all EUs execute their tasks

locally, i.e., Lj = L, ∀j ∈ M.
• Edge computing only (ECO): all EUs offload all their

tasks to the ES (i.e., Lj = 0 and aj = 0, ∀j ∈ M).
• Group bandwidth equalization (GBE): The uplink and

downlink transmissions occupy equal bandwidth B
2 each.

• Optimal: exhaustively enumerating all the
∏M

j=1
1

Διj
com-

binations of task offloading choices, where Διj = Δι =
0.2,∀j ∈ M.

The ADMM-based method adopts the golden-section search to
update the value of ιj , with an absolute precision ε0 = 10−3.
For all the considered benchmarks, except for the specified
values, all the other variables are optimized, where the details
are omitted for brevity. All the simulation results are obtained
through averaging 10 channel realizations. Notice that we con-
sider only 4 users in the simulation because the complexity in
computing the optimal solution using the enumeration based
method is prohibitive even when N is small, e.g., N = 8.
Nonetheless, we observe the similar performance advantages
of the proposed method when N is larger, which is omitted
here due to the page limit.

In Fig. 2(a), we first demonstrate the WSEL performance of
different methods with varying model size Dm. In this sim-
ulation, the path-loss exponent is set as σ = 2.9. We also
evaluate the impact of Δι on the performance of exhaus-
tive searching by considering Δι = 0.5, 0.2, 0.1, respectively.
The results show that the performance of exhaustive searching
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Fig. 2. (a) The WSEL performance versus model size Dm. (b) The WSEL
performance versus path-loss exponent σ.

is improved when Δι varies from 0.5 to 0.2, while the
improvement becomes marginal when using Δι = 0.1. We
therefore use Δι = 0.2 in the following simulation. For the
GBE method, the WSEL performance is better than ECO
and LCO at a small Dm, whereas dramatically deteriorates
when Dm becomes large. Besides, a crossover can be observed
between ECO and LCO with the rise of Dm. Eventually, ECO
achieves a similar grade to the ADMM-based method. This is
because that EUs tend to perform edge computing at a large
Dm. Nevertheless, the ADMM-based method shows a signif-
icant superiority over these three benchmarks and achieves
near-optimal performance for all values of Dm.

Then, the WSEL performance of the system is depicted
in Fig. 2(b) as a function of the path-loss exponent σ with
Dm = 16 Mbits. It displays that the ADMM-based method
provides significant performance improvement compared with
the benchmarks and achieve near-optimal performance (less
than 3.18% optimality gap) for all considered σ-s. For the GBE
method, it gets lower WSEL at small σ-s (e.g., σ = 2.7) than
LCO and performs better than ECO when σ is large. The ECO
method can approach the performance of ADMM at small σ,
but causes drastic performance degradation with the growth of
σ. On the contrary, the LCO method shows a different trend,
where its performance gap between the ADMM-based method
shrinks as σ increases. This is because a larger σ leads to a
severer signal attenuation due to path-loss and thus a higher
cost for data offloading.

V. CONCLUSION

This letter studied the optimal resource allocation problem
for joint computation task processing and distributed train-
ing in a multi-user edge intelligence network. We formulated
an MINLP problem to minimize the computation delay and
energy consumption of the EUs. To deal with the intractabil-
ity of the problem, we decomposed the MINLP problem into
multiple tractable sub-problems using ADMM technique. The
simulation results confirmed the effectiveness of the proposed
ADMM-based algorithm, and showed the advantage of jointly
optimizing the bandwidth allocation for training and inference
process over that allocating dedicated bandwidth for AI model
transmissions. Nonetheless, new training and inference pro-
cedures can be designed to further reduce the communication
cost and improve the training accuracy, which we would like
to leave for future study.

APPENDIX A
PROOF OF PROPOSITION 1

Let μj be the non-negative Lagrangian multiplier associated
with the constraint Tj ,N ≥ aj (yj +τmd

j ,N +C (1 − ιj )Lj /fj )−
τmd
j ,N−1 in Uj . Then, a partial Lagrangian function of (18) can

be given as

Lj = S I (uj )+μj

[
aj

(
yj + τmd

j ,N + C (1 − ιj )Lj /fj
) − T̂j ,N

]
, (25)

where T̂j ,N = Tj ,N +τmd
j ,N−1. By taking the partial derivative

of Lj with respect to fj and setting ∂L
∂fj

= 0, the optimal
structure of the local CPU frequency can be given as

fj = min
(

3

√
μj /

(
we

j 2kc
)
, fmax

)
. (26)

Then, the optimal value of T̂j ,N , denoted as T̂ ∗
j ,N , can be

discussed in the following two cases:
1) 0 ≤ ιj < 1: In this case, aj = 1 and μj > 0.

Otherwise, fj = 0 ⇒ Lj → ∞, leading to an unbounded result
for problem (18). Therefore, according to the KKT condition
μj [(yj + τmd

j ,N + C (1 − ιj )Lj /fj ) − T̂j ,N ] = 0, we have that

T̂ ∗
j ,N = yj + τmd

j ,N + C (1 − ιj )Lj /fj . (27)

2) ιj = 1: In this case, aj = 0. According to (9), we have

T̂ ∗
j ,N = τpr

j + CLj /fs. (28)

Thus we complete the proof of Proposition 1.
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