
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 7, JULY 2021 4495

Pricing-Driven Service Caching and Task
Offloading in Mobile Edge Computing

Jia Yan, Graduate Student Member, IEEE, Suzhi Bi , Senior Member, IEEE,
Lingjie Duan , Senior Member, IEEE, and Ying-Jun Angela Zhang , Fellow, IEEE

Abstract— Provided with mobile edge computing (MEC)
services, wireless devices (WDs) no longer have to experience
long latency in running their desired programs locally, but can
pay to offload computation tasks to the edge server. Given
its limited storage space, it is important for the edge server
at the base station (BS) to determine which service programs
to cache by meeting and guiding WDs’ offloading decisions.
In this article, we propose an MEC service pricing scheme to
coordinate with the service caching decisions and control WDs’
task offloading behavior in a cellular network. We propose a
two-stage dynamic game of incomplete information to model and
analyze the two-stage interaction between the BS and multiple
associated WDs. Specifically, in Stage I, the BS determines
the MEC service caching and announces the service program
prices to the WDs, with the objective to maximize its expected
profit under both storage and computation resource constraints.
In Stage II, given the prices of different service programs, each
WD selfishly decides its offloading decision to minimize individual
service delay and cost, without knowing the other WDs’ desired
program types or local execution delays. Despite the lack of
WD’s information and the coupling of all the WDs’ offloading
decisions, we derive the optimal threshold-based offloading policy
that can be easily adopted by the WDs in Stage II at the Bayesian
equilibrium. In particular, a WD is more likely to offload when
there are fewer WDs competing for the edge server’s computation
resource, or when it perceives a good channel condition or low
MEC service price. Then, by predicting the WDs’ offloading
equilibrium, we jointly optimize the BS’ pricing and service
caching in Stage I via a low-complexity algorithm. In particular,
we first study the differentiated pricing scheme and prove that
the same price should be charged to the cached programs of the
same workload. Motivated by this analysis, we further propose
a low-complexity uniform pricing heuristics.
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I. INTRODUCTION

VARIETIES of modern mobile applications, such as face
recognition, online gaming and augmented reality, have

recently emerged into our daily life. Wireless devices (WDs)
equipped with low-performance computation units often expe-
rience long latency to run these emerging computation-heavy
applications. Alternatively, mobile edge computing (MEC) is
a promising solution to provide high-performance computing
for the WDs [1], [2]. Instead of forwarding tasks to the
remote data center as traditional mobile cloud computing does,
the WDs are able to offload their tasks to nearby edge servers,
which efficiently reduces the high overhead and long backhaul
latency. The global edge computing market is expected to
reach $28.07 billion by 2027.1 For example, Amazon offers
many MEC services, such as AWS IoT Greengrass,2 where
users are charged based on the individual services they need.

In cellular networks, WDs can opportunistically offload
their tasks to the edge server according to time-varying channel
conditions and dynamic resource availability at the edge
server. Most of the existing work on opportunistic computation
offloading [3]–[7] assumes that the edge server has stored
all the service programs. In practice, however, the service
program acquiring process is time-consuming even during
off-peak traffic hours. Compared with the task execution time
at a millisecond level, the installation and loading time of
a program takes tens of seconds for some common applica-
tions [8]. As such, the low latency requirement does not allow
the edge server to fetch remotely from the program provider
every time an MEC service is required. The edge server needs
to pre-cache popular programs before repeatedly requested
by WDs’ offloaded tasks. Due to the limited caching storage
capacity, the edge server needs to be selective and can only
cache a subset of requested service programs before serving
the WDs. For the uncached service programs, the edge server
is unable to provide the real-time computation services to the
corresponding WDs’ online applications. This is referred to as
service caching [9]–[14].

In this article, we consider an MEC system with a base
station (BS) and multiple associated WDs. The MEC server is

1https://meticulousblog.org/top-10-companies-in-edge-computing-market/
2https://aws.amazon.com/greengrass/
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co-located with the BS. Specific service programs are required
to compute the tasks for the WDs. For instance, a human
face recognition service program at the edge server can be
repetitively called to process individual pictures of different
WDs. Based on its storage and computational capacity, the BS
determines which service programs to cache and what prices
to charge for the MEC service provided to the WDs. Based on
the BS’ service caching and pricing decisions as well as the
competition from the other WDs, each WD decides whether
to compute its task locally or at the edge server.

Making the optimal service caching, pricing, and offloading
decisions is a challenging task. Intuitively, the BS needs to
know the WDs’ offloading decisions, so that it can cache the
service programs that are most popularly requested. Likewise,
each WD’s offloading decision is affected by not only the
service caching and pricing of the BS, but also the offloading
decisions of the other WDs due to the sharing of MEC server
resources. However, in practice the WDs are unwilling to
reveal their private information about their local computing
capabilities, task offloading delays and requested service pro-
gram types. As such, their offloading decisions cannot be
accurately inferred by the BS and the other WDs.

To address the above problem, we model the practical
interaction between the BS and WDs as a two-stage dynamic
game of incomplete information (a.k.a Stackelberg game under
incomplete information) [15], [16], where only the random
distributions of each WD’s characteristics, including requested
service program type, local execution delay and offloading
time, are known to the others. Specifically, in Stage I, the BS
determines the service caching decisions and sets service
prices for tasks requiring different programs to maximize its
expected profit subject to the caching space and computation
constraints. A higher price for a certain service program
decreases the offloading willingness of the tasks requiring the
program, but spares more computation resource to serve other
types of tasks. The prices for different service programs are
highly related to the total caching space and computing power
at the BS, the size of each service program, the popularity
of each service program, and the WDs’ willingness to offload
their tasks under a certain price (which is not known precisely
due to the lack of complete information). In this regard, we are
interested in answering the first key question: What is the
BS’ optimal pricing and service caching strategy that max-
imizes its expected profit under incomplete information about
the WDs?

In Stage II, based on the given prices, the WDs compete for
the computation resource at the BS and make task offloading
decisions individually to minimize their own costs. Note that
the WDs’ optimal offloading decisions are coupled due to the
sharing of the limited resources at the edge server. Under such
negative externalities, a WD may choose not to offload its
task to the edge server if it predicts that many other WDs
are going to offload, leaving the edge server little computing
power to execute its task. Accordingly, the second key question
is raised: How should each WD decide its offloading decision
and how different WDs (with the same or different pro-
grams) affect each other’s decision-making under incomplete
information?

The main contributions in this article are concluded as
follows:

• Two-stage dynamic game (a.k.a Stackelberg game) of
incomplete information for managing service caching
and task offloading: To our best knowledge, this is
the first work that studies two-stage dynamic game of
incomplete information to jointly coordinate edge service
caching and guide computation task offloading in the
MEC systems. Besides selectively caching programs to
admit the target WDs, we employ pricing [17], [18] as
another degree of control to mitigate WDs’ competition
for limited computation resource and maximize the BS’
profit. The BS can encourage offloading of a certain type
of tasks by decreasing the price of the corresponding
program or increasing the other programs’ prices.

• Bayesian equilibrium of WDs’ offloading decisions: For
any given prices in Stage I, we analyze the WDs’
optimal offloading decisions by considering their mutual
competition and incomplete information. We show that
each WD will follow a threshold-based task offloading
policy at the Bayesian equilibrium, which is simple to
implement in practice. More specifically, the threshold
is a function of the programs’ prices, the BS’ CPU
computation frequency, and the statistic characteristics of
WDs’ private information.

• Optimal strategy of BS’ pricing and service caching:
Based on the analysis of the Bayesian equilibrium in
Stage II, we first derive the differentiated pricing scheme
for Stage I. Differentiated pricing assumes that the BS
sets different prices for the service programs. Based on
the analysis of the optimal prices for the cached service
programs, an efficient optimization algorithm is proposed
to obtain the optimal prices and service caching decisions.
Besides, in a special case where the valuation of each
WD’s personalized information is uniformly distributed,
we obtain more engineering insights on the optimal pric-
ing. More interestingly, we further show that the prices
of two service programs are equal when they require
the same computational workload, which motivates a
low-complexity uniform pricing heuristics. Specifically,
we suppose that the BS charges all the service programs
with the same price and propose a low-complexity algo-
rithm to jointly optimize the price and service caching
decisions.

Compared to the existing studies, the distinct technical
challenges are threefold. First, given the prices in Stage I,
the WDs form a Bayesian subgame in Stage II under the
incomplete information of WDs’ local computing capacities,
task offloading delays and requested service program types.
Due to their mutual competition for the limited edge comput-
ing resources, each WD should infer the other WDs’ strategic
decisions for his own decision making under such incomplete
information scenario. Therefore, it is technically challenging
to find the Bayesian subgame equilibrium and analyze the
structural properties of the obtained equilibrium in Stage II.
Second, based on the derived Bayesian equilibrium in Stage II,
finding the optimal strategy of BS’ pricing and service caching
in Stage I is a mixed integer stochastic optimization problem.
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The problem is challenging due to the combinatorial nature
of the service caching decisions and the strong coupling
with the service prices. The third challenge is to further
develop a reduced-complexity pricing scheme in Stage I for
fast deployment in practical heterogeneous networks with a
large number of service programs.

The rest of the article is organized as follows. In Section II,
we introduce the system model. Section III formulates the
two-stage dynamic game of incomplete information. We ana-
lyze the Bayesian subgame among the WDs in Stage II
in Section IV. The general differentiated pricing scheme
in Stage I is studied in Section V. We investigate the
low-complexity uniform pricing heuristics in Section VI. Some
model and result extensions are analyzed in Section VII.
In Section VIII, numerical results are described. Finally,
we conclude the article in Section IX.

A. Related Work

Existing work has extensively studied opportunistic compu-
tation offloading, which is often jointly optimized with system
computation and communication resource allocation [3]–[7].
Only recently has service caching started to attract research
interests [9]–[14]. For a single-server MEC system, [9] pro-
posed an online algorithm to dynamically schedule the cached
services without the knowledge of task arrival patterns. For
a multi-server MEC system, [10] studied the joint service
caching and request scheduling problem. The problem of min-
imizing served traffic load was considered in [11]. [12] posed
the service caching problem as a combinatorial bandit learning
problem. In [13], each WD can offload its task to either the
remote cloud center or a nearby edge node that has cached the
required service program. Based on this, a joint optimization of
service caching and task offloading was studied therein. Notice
that the above work [9]–[13] has assumed that all tasks are
computed at the edge server or/and remote cloud, neglecting
the benefits of opportunistic computation offloading in MEC.
For example, WDs may choose to compute locally when
they perceive poor channel conditions. Very recently, [14]
considered the joint optimization of service caching placement,
task offloading, and resource allocation in a sequential task
graph.

The above work has optimized the service caching, task
offloading and resource allocation in a centralized manner.
In terms of decentralized operation, previous work has pro-
posed Stackelberg games [19], [20], priority pricing [21],
multi-round resource trading [22] in MEC systems. Specif-
ically, [19] considered a Stackelberg game, where the edge
server acts as the leader and sets prices to maximize its
revenue with computation capacity constraint. The WDs are
the followers and locally make offloading decisions to min-
imize their own costs for given prices. [20] studied optimal
pricing and edge node selection by adopting a Stackelberg
game. [21] further proposed a priority pricing scheme, where
users are served first for a higher price. The authors in [22]
designed an online multi-round auction mechanism for profit
maximization.

Fig. 1. System model of BS provision of MEC services to M WDs who can
choose to offload their desired programs’ tasks to the edge server (i.e., BS)
or compute locally. Given its limited caching storage, the BS can only serve
those WDs if it caches such desired programs from the program provider
beforehand. The BS cannot cache all potential programs from the program
provider.

[19]–[22] have assumed that all programs are cached at the
BS and none of these studies have taken service caching into
account. In this article, we endeavor to design a Stackelberg
game in MEC to coordinate the service caching and pricing
decisions at the BS and the offloading behavior of the WDs.
Besides, the existing work (e.g., [19], [20], [22]) has assumed
that each WD’s private information is known to all. In con-
trast, we take into account the information uncertainty when
designing and analyzing the two-stage Stackelberg game.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a multi-user MEC sys-
tem with M single-antenna active WDs, denoted by a set
M = {1, 2, . . . , M}, and one single-antenna BS. MEC server
is located at the BS to share the infrastructure such as stable
power supply. The BS provides MEC services to the WDs
with its limited computation resource and storage capacity.

Suppose that each WD has a computationally intensive task
to compute. The computation of each task requires a service
program, e.g., human face recognition program. We refer to a
task as a type-j task if it is processed by the service program
j, j ∈ N = {1, 2, . . . , N}, where N is the total number of
service programs. We define a binary indicator ui,j such that
ui,j = 1 when the task of WD i is of type j, and 0 otherwise.
Accordingly,

�
j ui,j = 1, ∀i ∈ M, implying that a WD

cannot run two programs at the same time. Besides, we denote
the type of the WD i’s task as ϕi ∈ {1, . . . , N}. In particular,
ϕi = j if ui,j = 1.

Each WD needs to decide whether to compute its task
locally or remotely at the BS. Define a binary indicator
variable ai such that ai = 1 when WD i decides to offload its
task for edge computing and ai = 0 when WD i decides to
compute the task locally. A task can be served at the BS only
if the BS has pre-cached the corresponding service program
from the program provider. Take Fig. 1 for example. The BS
has cached the required programs of WD 1 and WD 2. After
comparing the costs of local computing and edge computing,
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WD 1 decides to offload its task for edge computing, while
WD 2 decides to compute locally despite the availability of its
required service program at the BS. WD M , on the other hand,
has no choice but to compute locally, because its required
service program is not cached at the BS. To avoid trivial cases,
we assume that the WDs have the service programs to run their
own tasks locally. Otherwise, they will always offload the tasks
to the edge server. In the following, we introduce the service
caching, communication, and computation models in detail.

A. BS’ Service Caching Model

Suppose that the cost for the BS to acquire the j-th service
program from the program provider is rj . After obtaining the
program data and configuration from the program provider,
the edge server installs and caches the service programs
(e.g., executable.EXE files). We use a binary indicator xj to
denote the caching decision of the j-th program at the BS.
Specifically, xj = 1 tells that the j-th program is cached at
the BS, and xj = 0 otherwise. Given the limited storage space,
the BS cannot cache all the potential programs. We model the
caching capacity constraint at the BS as

N�
j=1

xjcj ≤ C, (1)

where cj is the size of the j-th generated program and C is the
caching space at the BS. Besides, the BS needs the input task
data (e.g. individual photos for the human face recognition
program) from the WDs to run the cached programs.

B. WDs’ Communication Model With BS

We assume that the WDs access the uplink spectrum
through FDM or OFDM to avoid mutual interferences. Each
WD is fairly allocated an orthogonal channel of identical
bandwidth W .3 Let pi denote the transmit power of WD
i when offloading its task to the BS. The wireless channel
gain between WD i and the BS is denoted as hi. Besides,
we assume additive white Gaussian noise (AWGN) with zero
mean and identical variance σ2 at all the receivers. The
offloading data rate of the task from WD i to the BS is

Ru
i = W log2

�
1 +

pihi

σ2

�
. (2)

Then, the transmission time of WD i when offloading its task
is expressed as

τu
i =

Ii

Ru
i

, (3)

where Ii is the size (in bits) of the input data of WD i’s
task. In this article, we suppose that different computation
tasks under the same service program can have different data
inputs and outputs. For example, when running the human
face recognition application, WDs need to input their photos
of different sizes and definitions and expect the program to
return specific results.

3Note that there are mature ways such as spectrum management to control
interference, which is out of the scope of this article.

Finally, we assume that the time spent on downloading the
task computation result from the BS to the WD is negligible
due to the strong transmit power of the BS and the relatively
small output data size (as compared to the input data size).
For instance, the human face recognition application outputs
the person name with only a few bytes, which is much smaller
than the size of the corresponding input photo (of several mega
bytes).

C. Computation Model at the BS and the WDs

If WD i computes its task locally, i.e., ai = 0, then the
local execution time is

τ l
i =

�N
j=1 ui,jLj

f l
i

, (4)

where f l
i is the CPU computation frequency of WD i and Lj

denotes the computational workload in CPU cycles to execute
the type-j task.

Alternatively, WD i can choose to offload its task in MEC
services, i.e., ai = 1. Suppose that the edge server creates
multiple virtual machines (VMs) to execute the offloaded
tasks in parallel and each VM is assigned to handle one
task. In practice, the edge server with powerful computation
capability can actually assign an individual VM for each
offloaded task, thus allowing parallel computation of multiple
tasks [3-6]. Some popular techniques to support such parallel
computation at the edge server include serverless comput-
ing [8] and container [23] technologies, where the computation
resources at the edge server (including memory, CPU, disk,
and networking resources) are partitioned into VMs that do
not interfere with each other. For simplicity, we assume that
the total computation resource at the edge server (i.e., the total
CPU frequency f c) is equally partitioned and allocated to the
VMs. Accordingly, the task processing time at the edge server
is

τc
i (m) =

�N
j=1 ui,jLj

f c/m
, (5)

where m is the number of WDs’ tasks offloaded to the edge
server for edge computing, i.e., m =

�M
i=1 ai. Notice that m is

a random variable depending on WDs’ offloading decisions ai.
τc
i (m) is an increasing function of m. In Section VII, we will

extend the investigation to a general case where the edge CPU
frequency is proportionally allocated to the offloaded tasks
according to their computation workloads.

III. TWO-STAGE DYNAMIC GAME FORMULATION

UNDER INCOMPLETE INFORMATION FOR

MEC SERVICE PROVISION

The BS and the WDs interact with each other in a two-stage
dynamic game of incomplete information as shown in Fig. 2,
where the BS is the leader and the WDs are the followers. The
profit-seeking BS first determines the caching decisions and
sets the program prices for task executions in Stage I. Then,
the delay-sensitive WDs optimize their offloading decisions
individually in Stage II based on the prices announced from
the BS and the WDs’ mutual competition to share the limited
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Fig. 2. Our proposed two-stage dynamic game for the interaction between
the BS and the WDs.

computation resource at the BS. We will analyze this dynamic
game by backward induction. In the following, we first detail
the problem formulation in each stage.

A. WDs’ Problem Formulation in Stage II

Each WD aims to make an optimal offloading decision to
minimize its total cost, defined as its task execution delay plus
the payment to the BS. In particular, the task execution time
of WD i, denoted by Ti, is

Ti(m) = (1 − ai)τ l
i + ai(τu

i + τc
i (m)). (6)

Note that if ai = 0, the total delay Ti in (6) simply equals
the local execution time τ l

i in (4). Otherwise, Ti consists of
the data uploading time τu

i in (3) and the edge computing
time τc

i in (5), which increases with m, the total number of
tasks offloaded to the BS. If WD i chooses to offload its task,
i.e., ai = 1, then it needs to pay the BS for the service.
Suppose that the price the BS charges for program j’s task
execution is πj per CPU cycle. Then, the total amount WD i

pays is ai

�N
j=1 ui,jLjπj . As such, the total cost WD i aims

to minimize is

Ui(m) = Ti(m) + ai

N�
j=1

ui,jLjπj . (7)

In an ideal case where WD i has the knowledge of m, it can
simply compare Ui(m|ai = 1) and Ui(m|ai = 0) and choose
the offloading decision that yields the smaller value of Ui. In
practice, however, a WD is not able to infer the other WDs’
offloading decisions, as their private information including
local computing time τ l

i , offloading time τu
i , computation

workload Lϕi and program type ui,j is not revealed. As such,
the exact value of m is unknown. To address the issue, we will
derive the Bayesian equilibrium to understand each WD’s best
response under incomplete information in Section IV.

B. BS’ Problem Formulation in Stage I

The BS aims to maximize its overall profit by optimizing
the service caching x = {xj , j ∈ N} and program pricing
π = {πj , j ∈ N}. In particular, the profit is the difference

between the payments received from the WDs and the cost of
acquiring the programs from the program provider:

uB =
M�
i=1

ai

N�
j=1

xjui,jLjπj −
N�

j=1

xjrj . (8)

The first term in the right hand side of (8) is the total payments
received from the WDs. Here, the multiplicative factor xj

corresponds to the fact that the BS can serve a type-j task
only when the j-th program is cached. The second term in (8)
is the total program acquiring cost from the program provider.

Under the assumption of incomplete information, the BS
does not know each WD’s private information, including local
execution time τ l

i , offloading time τu
i , computation workload

Lϕi and program type ui,j . Instead, the BS only knows the
distribution of each WD’s characteristics. As such, the BS
infers the offloading probabilities for the WDs and computes
the expected profit as

UB = E [uB] = E

⎡
⎣ M�

i=1

ai

N�
j=1

xjui,jLjπj −
N�

j=1

xjrj

⎤
⎦ , (9)

where the expectation is taken over the distributions of service
program types ui,j and the offloading decisions ai the WDs
made in the Stage II game.

Mathematically, the optimization problem at the BS is
formulated as

(P1) max
(π,x)

UB,

s.t.
N�

j=1

xjcj ≤ C,

xj ∈ {0, 1}, ∀j = 1, . . . , N. (10)

In the following, we analyze the proposed two-stage
dynamic game using backward induction. In Section IV,
we first start with the Stage II game, when the service price π
is fixed. In particular, we will analyze the Bayesian subgame
among the WDs and obtain the equilibrium decision policy for
all the WDs. Then in Section V and VI, we analyze the Stage I
where the BS optimizes programs’ prices π∗ and caching
decisions x∗ to maximize its expected profit, by predicting
the WDs’ equilibrium offloading behavior.

IV. ANALYSIS OF THE WDS’ OFFLOADING

EQUILIBRIUM IN STAGE II

By observing the prices announced by the BS in Stage I,
the WDs determine the offloading decisions individually
by estimating the other WDs’ decisions, which leads to a
Bayesian subgame in Stage II. An equilibrium is reached if no
WD can improve its cost by changing its offloading strategy
unilaterally. In this section, we manage to derive an optimal
threshold-based offloading strategy for all the WDs at the
Bayesian subgame equilibrium (as a stable outcome of the
WDs’ interactions) and analyze some interesting properties of
the optimal threshold.

To derive the Bayesian subgame equilibrium under incom-
plete information, we first try to understand the properties of
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the optimal offloading decisions in an ideal case where the
private information of each WD is known by each other. That
is, each WD exactly knows the number m of tasks offloaded to
the BS by calculating the offloading decisions on other WDs’
behalf.

Lemma 4.1 (Complete Information Scenario): The optimal
offloading decision of WD i with type-ϕi task is given by

a∗
i (πϕi) =

⎧⎨
⎩

1, πϕi ≤ θi − m

f c
;

0, otherwise,
(11)

where

θi =
τ l
i − τu

i

Lϕi

. (12)

Lemma 4.1 implies that WD i will choose to offload
if its total payment is smaller than the difference between
the local execution time and the edge computing time, i.e.,
Lϕiπϕi ≤ Lϕiθi − mLϕi

fc . Note that the WD i’s willingness-
to-offload increases when its local computation time τ l

i is long,
the data uploading to the BS incurs short delay (small τu

i ),
or there are a smaller number m of WDs competing for the
BS’ computation resource f c.

Remark 4.1: Our proposed pricing mechanisms can be
directly applied to the scenario considering WDs’ energy
consumptions of local computing and task offloading. Suppose
that the energy consumption for local computing of WD i is
el

i = κLϕi(f l
i )

2, where κ is the effective switched capacitance
parameter related to the chip architecture. Besides, we assume
that the energy consumed on task offloading from WD i to
the BS is eu

i = pi
Ii

Ru
i

. Suppose that the goal of each WD is to
optimize its offloading decision to minimize its task execution
delay and energy consumption plus the payment to the BS.
In this case, the integrated private information of WD i is
θi = τ l

i+el
i−τu

i −eu
i

Lϕi
.

Now we turn to the incomplete information scenario where
neither m nor θi is publicly known. Instead, θi appears random
to other WDs and the BS. We assume that θi’s are independent
and identically distributed with probability density function
(PDF) f(·) and cumulative distribution function (CDF) F (·).
The distribution function is a common prior knowledge to all
the WDs and the BS.

Remark 4.2: For the private information θi of WD i, we have
θi = τ l

i−τu
i

Lϕi
= (Lϕi

f l
i

− Ii

Ru
i
)/Lϕi . In practice, we consider a lin-

ear relation between the input data size Ii and the computation
workload Lϕi for the task of WD i, i.e., Ii = ξiLϕi [3,4,6].
Accordingly, we have θi = 1

f l
i

− ξi

Ru
i

, which depends on the
local CPU frequency and the channel condition between the
BS and WD i. Because the variations of wireless channels
are independent between different users, we assume that θi

is independent across different WD i. Besides, we assume θi

is identically distributed across the WDs for the simplicity in
Section IV, V and VI. In Section VII, we extend the investigation
to a general case where θi’s are non-identically distributed.

As in the wide literatures of pricing and mechanism
designs [24], we suppose that the distribution of θi is regular
as defined below.

Assumption 1 (Regular Distribution): y(θ) = θ − 1−F (θ)
f(θ) is

an increasing function of continuous random variable θ, where
F (θ) and f(θ) are the CDF and PDF of θ, respectively.

Note that many random distributions, such as uniform, nor-
mal, and exponential distributions, are indeed regular distribu-
tions. Likewise, we assume that WD i does not know the other
WDs’ task types, so that the prices that the other WDs need to
pay for offloading are unknown. In this regard, we assume that
the program indicator ui,j for each WD i appears random to
other WDs with probability qj . In particular, qj represents the
j-th program’s popularity. We suppose that all the WDs and
BS can estimate the distribution of WD i’s integrated private
information θi and the programs’ popularity qj from historical
data.

Then, the PDF of βi = θi − πϕi is given by

g(βi) =
N�

j=1

qjf(βi + πj), (13)

and the corresponding CDF G(βi) is

G(βi) =
 βi

−∞
g(x)dx =

 βi

−∞

N�
j=1

qjf(x + πj)dx

=
N�

j=1

qjF (βi + πj). (14)

Using the definition above and based on Lemma 4.1,
we obtain the optimal offloading strategy for each WD at
the Bayesian equilibrium under the incomplete information
scenario in the following Theorem 1.

Theorem 1 (Incomplete Information Scenario): A WD i with
type-ϕi task will offload its task to the BS if and only if

πϕi ≤ θi − δ∗(π). (15)

Here, the equilibrium decision parameter δ∗(π) is the same
for all the WDs and is the unique solution to

Φ(δ) := δ − (M − 1)(1 − G(δ)) + 1
f c

= 0. (16)

Besides, δ∗(π) satisfies 1
fc ≤ δ∗(π) ≤ M

fc .
Proof: Due to symmetry, we assume that all the WDs

other than WD i choose to offload their tasks to the edge
server if and only if their valuations βk, k �= i, are larger than
a decision parameter δ > 0. By extending Lemma 4.1 to the
incomplete information case, we know that when the following
inequality holds, WD i would prefer to offload its task for edge
computing.

θi − πϕi ≥ E

�
m� + 1

f c

�
,

where m� follows a binomial distribution B(M −1, 1−G(δ))
and represents the number of the WDs other than WD i that
prefer edge computing. Here, E

�
m�+1

fc

�
= (M−1)(1−G(δ))+1

fc .
At the equilibrium, we have the common decision parameter
δ. That is,

δ =
Em� [m�] + 1

f c
=

(M − 1)(1 − G(δ)) + 1
f c

.
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Next, we want to show that there exists a unique solution
δ∗ to (16). Since G(δ) in (14) is an increasing function with
respect to δ, Φ(δ) is a monotonically increasing function with
respect to δ, i.e., ∂G(δ)

∂δ > 0. When δ = 1
fc , we have Φ(δ) ≤ 0.

When δ = M
fc , we have Φ(δ) ≥ 0. Together with the result

that Φ(δ) is a monotonically increasing function, Φ(δ) = 0
has a unique solution δ∗ ∈ [ 1

fc , M
fc ].

According to Theorem 1, we can obtain δ∗ through a
bi-section search over δ∗ ∈ [ 1

fc , M
fc ] that satisfies Φ(δ∗) = 0.

δ∗(π) can be viewed as the expectation of m
fc in (11)

under incomplete information. Despite WDs’ heterogeneity in
local execution time, communication delay and program type,
the proposed policy integrates all such personal information
in a single parameter θi. To decide whether to offload, a WD
just needs to compare its private term θi with the decision
threshold, which is defined as the equilibrium parameter δ∗

plus price πϕi for its desired program (i.e., θi ≥ πϕi +δ∗(π)).
In the following, we derive some interesting properties of
decision threshold δ∗ + πϕi for WD i.

Proposition 4.1: The WD i’s decision threshold δ∗ + πϕi

increases in its own program’s price πϕi and decreases in any
other program’s price πk, k ∈ N \ ϕi.

Proof: Please refer to Appendix A.
The Proposition 4.1 indicates that the BS can incentivize

the WDs with type-j tasks to offload by setting a lower price
for the j-th program or a higher price for the other programs.
Next, we further study the impacts of the edge server’s CPU
computation frequency f c and the total number of users M
on the offloading decision threshold δ∗ + πϕi .

Proposition 4.2: The WD i’s decision threshold δ∗ + πϕi

decreases in f c, and increases in M .
Proof: Please refer to Appendix B.

It follows from Proposition 4.2 that WDs are more likely
to offload when the BS has larger computational capability.
Besides, as more WDs compete for the limited computation
resource, each WD tends to offload with lower probability to
avoid long computation latency at the BS.

By predicting the WDs’ equilibrium strategies in Stage II
through Theorem 1, we are ready to turn to Stage I in the
following section.

V. DIFFERENTIATED PRICING TO COPE

WITH MEC SERVICE CACHING

The optimal decision in Stage I involves combinatorial
optimization due to the binary service caching decisions x
in (P1). Due to the variation in the programs’ properties (i.e.,
the programs’ popularity and workloads, the storage sizes of
programs and the cost of acquiring different programs), the BS
can set different prices for different programs to increase its
profit (a.k.a differentiated pricing scheme). In this section,
we first consider the general case of Problem (P1) where the
BS is allowed to charge different prices for computing different
types of tasks.

A. BS’ Profit Maximization in Problem (P1)

Based on the Bayesian equilibrium policy derived in
Stage II, the BS can effectively predict the WDs’ offloading

behaviors by calculating the offloading probability of each
program’s tasks. Specifically, the offloading probability of
type-j tasks is equal to 1−F (δ∗(π)+πj). Then, Problem (P1)
in Stage I is expressed as

(P2) max
(π,x)

N�
j=1

(1 − F (δ∗(π)+πj))xjqjMπjLj −
N�

j=1

xjrj ,

s.t.
N�

j=1

xjcj ≤ C,

xj ∈ {0, 1}, ∀j = 1, . . . , N. (17)

Problem (P2) is challenging due to the strong coupling
between the caching decisions and each program’s task price.
To tackle this problem, we first suppose that the caching
decisions are given and derive some important properties of
the optimal prices in the following proposition, based on which
we propose an efficient algorithm to optimize the prices.

Proposition 5.1: Suppose that a subset N̂ ⊆ N of programs
are cached in the BS. Then, the optimal program price
π∗

j > 0, ∀j ∈ N̂ satisfies (18), shown at the bottom of the
next page.

Here, δ∗(π) in Stage II is obtained in (16).
Proof: The expected profit of the BS is

UB =
�
j∈N̂

(1 − F (δ∗ + πj))qjMπjLj −
�
j∈N̂

rj .

To find the optimal price of program j, we calculate the
derivative of UB with respect to πj as

∂UB

∂πj
= −f(δ∗ + πj)(1 +

∂δ∗

∂πj
)qjMπjLj

+ [1 − F (δ∗ + πj)]qjMLj

+
�

k �=j,k∈N̂
−f(δ∗ + πk)

∂δ∗

∂πj
qkMπkLk.

According to the analysis in Stage II, we have

∂δ∗

∂πj
=

−(M − 1)qjf(δ∗ + πj)
f c + (M − 1)

�
j∈N̂ qjf(δ∗ + πj)

.

By equating ∂UB

∂πj
= 0, we have (19), shown at the bottom of

the next page. By multiplying [f c + (M − 1)
�

j∈N̂ qjf(δ∗ +
πj)] in both sides of (19) for program j, we have (20), shown
at the bottom of the next page, which yields ωd(πj) = 0.

Accordingly, we propose an alternating algorithm that alter-
nately optimizes the prices of the cached programs given
any feasible N̂ . Specifically, in the t-th iteration, the algo-
rithm finds the optimal {π(t)

j , j ∈ N̂} according to Propo-

sition 5.1 given π
(t−1)
−j = {π(t−1)

k , k ∈ N̂ \ j} and the
corresponding δ∗(π(t−1)). In the following, we show that there
exists a unique {π(t)

j , j ∈ N̂} in each iteration t.

Corollary 5.1: Suppose that the other prices π
(t−1)
−j and

δ∗(π(t−1)) in the last iteration are given. There exists a unique
solution π

(t)
j , j ∈ N̂ , that satisfies ωd(π

(t)
j ) = 0 in the t-th

iteration.
Proof: If the distribution of θi is regular, then

[1−F (δ∗(π(t−1))+πj)]

f(δ∗(π(t−1))+πj)
− πj is a decreasing function in πj given
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δ∗(π(t−1)). Besides, (M − 1)qj[1 − F (δ∗(π(t−1)) + πj)]
decreases in πj . Therefore, ωd(πj) is a decreasing function
of πj given π

(t−1)
−j and δ∗(π(t−1)).

When πj = 0, we have ωd(πj) > 0. Besides, when
πj → +∞, ωd(πj) → −∞. Hence, there exists a unique
π∗

j ∈ (0, +∞) that satisfies ωd(π∗
j ) = 0 given π

(t−1)
−j

and δ∗(π(t−1)).
According to Corollary 5.1, given the prices π

(t−1)
−j and

the equilibrium parameter δ∗(π(t−1)) in (16) in Stage II,
we can obtain the optimal price π

(t)
j for the cached program

j, j ∈ N̂ , by an efficient bi-section search method over
π

(t)
j ∈ [0, φ] that satisfies ωd(π

(t)
j ) = 0 in the t-th iteration.

Here, φ is a sufficiently large real number. We summarize the
proposed alternating algorithm for differentiated pricing given
any feasible N̂ in Algorithm 1.

Then, the remaining optimization of Problem (P2) is to
find the optimal caching decisions x. In general, when the
total number of programs is moderate, we can enumerate all
feasible service caching decisions x that satisfy the caching
space constraints in (P2) and choose the best service caching
decision that yields the maximal UB . When the dimension
of x is high, many meta-heuristic methods, such as Gibbs
sampling [5] and particle swarm optimization [25], can be
applied to effectively find the optimal solution. Take Gibbs
sampling for example. By starting from an initial feasible
solution x(0), we update the service caching decision to x(t)

in the t-th sampling according to the probability distributions
Λ(x) = {Λ(x), ∀x ∈ Xx(t−1)} with

Λ(x) =
exp(−μ/UB(x))�

x�∈X
x(t−1)

exp(−μ/UB(x�))
. (21)

In (21), μ is a temperature parameter and Xx(t−1) is the sam-
pling set generated from x(t−1). In particular, given x(t−1),
Xx(t−1) consists of binary vectors that differ from x(t−1) in at

most one position (i.e., changing at most one entry of x(t−1)

from 0 to 1 or 1 to 0). Moreover, the vectors in Xx(t−1) satisfy
the caching storage constraint

�N
j=1 xjcj ≤ C. According

to (21), a service caching decision x that yields a larger
expected profit UB is more likely to be picked. According
to the proof in Section IV, [26], a Gibbs sampling algorithm
achieves the optimal solution when it converges.

Algorithm 1 Computation of Differentiated Pricing Given a
Feasible N̂ for Problem (P2)

1: The BS initializes the prices as {π(0)
j , j ∈ N̂} and

calculates the δ∗(π(0)) in (16);
2: Set t = 1;
3: repeat
4: for Each cached program j ∈ N̂ do
5: Apply bi-section search method to find π

(t)
j that sat-

isfies ωd(π
(t)
j ) = 0 in (18) with given π

(t−1)
−j and

δ∗(π(t−1));
6: end for
7: Obtain {π(t)

j , j ∈ N̂} and calculate the corresponding
δ∗(π(t)) in (16);

8: Set t = t + 1.
9: until {π∗

j , j ∈ N̂} converges.

Though complicated, we manage to derive some interesting
properties of the optimal prices in the differentiated pric-
ing scheme under special cases to deliver more engineering
insights.

First, we have the following corollary when f c → ∞.
Corollary 5.2: In the case where the BS has very large

computational power, i.e., f c → ∞, we have

π∗
j =

1 − F (π∗
j )

f(π∗
j )

, ∀j ∈ N̂ .

ωd(πj) : = qjMLj

�
(f c + (M − 1)

�
k �=j,k∈N̂

qkf(δ∗(π) + πk))
�
[1 − F (δ∗(π) + πj)]

f(δ∗(π) + πj)
− πj

�

+ (M − 1)qj [1 − F (δ∗(π) + πj)]
�

+ (M − 1)qj

�
k �=j,k∈N̂

f(δ∗(π) + πk)qkMπkLk = 0, ∀j ∈ N̂ . (18)

−(1 +
−(M − 1)qjf(δ∗ + πj)

f c + (M − 1)
�

j∈N̂ qjf(δ∗ + πj)
)qjMπjLj +

[1 − F (δ∗ + πj)]
f(δ∗ + πj)

qjMLj

=
�

k �=j,k∈N̂
f(δ∗ + πk)

−(M − 1)qj

f c + (M − 1)
�

j∈N̂ qjf(δ∗ + πj)
qkMπkLk, ∀j ∈ N̂ . (19)

qjMLj

�
[f c + (M − 1)

�
j∈N̂

qjf(δ∗ + πj)]
[1 − F (δ∗ + πj)]

f(δ∗ + πj)
− (f c + (M − 1)

�
k �=j,k∈N̂

qkf(δ∗ + πk))πj

�

= qjMLj

�
(f c + (M − 1)

�
k �=j,k∈N̂

qkf(δ∗ + πk))
�
[1 − F (δ∗ + πj)]

f(δ∗ + πj)
− πj

�
+ (M − 1)qj [1 − F (δ∗ + πj)]

�

= −(M − 1)qj

�
k �=j,k∈N̂

f(δ∗ + πk)qkMπkLk. (20)
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Proof: When f c → ∞, we have δ∗ = 0 at the Stage II
according to Theorem 1. Then, according to Proposition 5.1,
we have π∗

j =
1−F (π∗

j )

f(π∗
j ) , ∀j ∈ N̂ .

From Corollary 5.2, the optimal prices only depend on
the PDF and CDF of the WDs’ valuation of θi when the
f c is very large. It is intuitive as the WDs do not compete
for the computation resource of the BS when it is abundant.
Notice that even if f c goes to infinity, some WDs still choose
not to offload due to the long communication delay (i.e.,
τu
i > τ l

i in (12)).
Proposition 5.2: If the task workloads of all the cached

programs are the same (Lj = Lk, ∀j, k ∈ N̂ ), then the edge
server should set the same price (π∗

j = π∗, ∀j ∈ N̂ ) for all
the cached programs as the unique solution to

π − 1 − F (δ∗(π) + π)
f(δ∗(π) + π)

− (M − 1)(
�

j∈N̂ qj)(1 − F (δ∗(π) + π))

f c
= 0. (22)

Proof: Please refer to Appendix C.
The above proposition indicates that if the cached programs

have the same workload, then the optimal prices per CPU cycle
are equal for these programs.

B. Uniform Distribution of θi in (12)

To further obtain some engineering insights from our
two-stage game analysis, we consider a special case where
θi follows a uniform distribution within [θ, θ̄]. Without loss of
generality, we assume that θ̄ > 1

fc . Otherwise, none of the
WDs will offload its task to the BS. Besides, we generally
assume that θ < 0, implying that τ l

i < τu
i for some WDs

facing bad channel conditions.
Proposition 5.3: Suppose that there are two programs j and

k cached at the BS. Then, with uniform distribution of θi,
we have

• If Lj = Lk, then

π∗
j = π∗

k =
θ̄

2
− 1

2f c
; (23)

• If Lj > Lk, then π∗
j < π∗

k, implying that a higher
unit price is charged to the program with the smaller
workload.

Proof: Please refer to Appendix D.
From the above proposition, we have the following

observations:
• If the workloads of different cached programs are equal,

the BS sets the same price per CPU cycle for the pro-
grams, which is in consistence with Proposition 5.2. For
the obtained equal price, we have the following insights:

– The BS tends to set a higher price when it has more
computation power, i.e., a larger f c. This is because a
larger f c increases the WDs’ willingness to offload.
Thus, the BS can charge a higher price to obtain
higher profit.

– Increasing θ̄, the upper bound of the θi, leads to a
higher optimal price. It is because a larger average θi

(i.e., a larger difference between local execution time
τ l
i and offloading transmission delay τu

i according
to (12)) represents higher probability to offload for
WD i. Accordingly, the BS can increase the price
for higher profit.

• If the workloads are different, the program with the
larger workload has a lower price. Notice that the pro-
grams’ prices are charged for unit computation workload.
Intuitively, the BS can increase its profit by setting a
lower price for the program with the larger workload to
encourage more workloads offloaded from the WDs.

Besides the relation between the optimal prices and the pro-
gram workloads, Proposition 5.4 further discusses the impact
of program popularity qj on the optimal prices.

Proposition 5.4: Suppose that the BS caches two programs
j and k. With uniform distribution of θi, we have the following
properties:

• If Lj > Lk, π∗
j increases with popularity qj of program

j, regardless of the value of qk.
• If Lj < Lk, π∗

j decreases with qj when

qk ∈ (0,
2fc(θ̄−θ)Lj

(Lk−Lj)(M−1) ). Otherwise, when

qk ≥ 2fc(θ̄−θ)Lj

(Lk−Lj)(M−1) , π∗
j increases with qj .

Proof: Please refer to Appendix E.
From Proposition 5.4, we obtain the following insights:
• The optimal price πj increases with qj if the program j

has the larger workload. As the program j’s popularity
increases, more WDs are interested in program j with
more demands. Thus, the BS can charge higher price for
higher profit.

• If program j has a smaller workload, the relation between
πj and qj depends on the other larger workload’s program
popularity qk. Specifically, when qk is small, i.e., the
k-th program is not popular, the BS has more spare
computation resource to serve type-j tasks. Thus, when
qj increases, the BS has the incentive to decrease the
price πj to encourage the offloading of more type-j tasks.
On the other hand, when qk is large, the BS has the
incentive to discourage the type-j tasks’ offloading by
setting a higher price πj with the increase of qj , so that
it can spare more computation resource for the type-k
tasks.

VI. LOW-COMPLEXITY UNIFORM PRICING HEURISTICS

TO COPE WITH MEC SERVICE CACHING

Based on Proposition 5.2 in Section V, by approximating the
term

�
j∈N̂ qj = 1 in (22), we can decouple the optimization

for the common price π from that for the caching decision
x. In this case, we can obtain π∗ by solving (22). Having
obtained π∗, the remaining problem for optimizing caching
decision x is a standard Knapsack problem. This motivates a
reduced-complexity pricing scheme in this section.

Specifically, we propose in this section, an efficient
low-complexity algorithm to optimize the program prices and
service caching decisions under a uniform pricing heuristics,
where the BS sets the same unit price to all the programs,
i.e., π = π1 = . . . = πN . The identical pricing among all the
programs simplifies our analysis of Problem (P1).
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Based on Stage II’s Bayesian equilibrium derived in Theo-
rem 1, a task is offloaded with probability 1 − F (δ∗(π) + π)
regardless of its type due to the uniform pricing.4 Then, we can
rewrite Problem (P1) in Stage I as

(P3) max
(π,x)

(1 − F (δ∗(π) + π))π
N�

j=1

LjxjqjM −
N�

j=1

xjrj ,

s.t.
N�

j=1

xjcj ≤ C,

xj ∈ {0, 1}, ∀j = 1, . . . , N. (24)

Note that the optimization for the price π is decoupled
from the caching decisions x in Problem (P3). Thus, we can
separately optimize π by maximizing the term (1−F (δ∗(π)+
π))π in the objective function of Problem (P3). In particular,
the following Proposition 6.1 shows that the optimal price π∗

can be efficiently obtained using bi-section search method.

Algorithm 2 Computation of Uniform Pricing Heuristics and
Service Caching for Problem (P3)

1: Set φ as a sufficiently large real number and ε = 10−6;
2: πUB = φ, πLB = 0;
3: repeat
4: Set π = πUB+πLB

2 ;
5: Calculate δ∗(π) in Stage II according to (16);
6: if ωu(π) < 0 then
7: πLB = π;
8: else
9: πUB = π;

10: end if
11: until |ωu(π)| < ε.
12: Obtain the optimal caching decisions x∗ by solving knap-

sack problem via toolbox and using obtained π∗.

Proposition 6.1: The optimal uniform price π∗ of Prob-
lem (P3) is the unique solution to

ωu(π) := π − [1 − F (δ∗(π) + π)]
f(δ∗(π) + π)

− (M − 1) [1 − F (δ∗(π) + π)]
f c

= 0, (25)

where δ∗(π) is given in (16).
Proof: We first prove the optimality of the solution in (25).

The derivative of (1 − F (δ∗(π) + π))π with respect to π is

∂[(1 − F (δ∗(π) + π))π]
∂π

=
�
π

�
−f(δ∗ + π)(

∂δ∗

∂π
+ 1)

�

+ [1 − F (δ∗ + π)]
�
. (26)

4Here, we approximate the equilibrium parameter δ∗(π) in Stage II assum-
ing that all the WDs are only informed of the uniform price. In this case,
the offloading probability inferred by the BS is unrelated to the caching
decisions. Actually, in the optimal differentiated pricing scheme, the Bayesian
equilibrium in Stage II is based on the prices and caching decisions announced
by the BS, where the WDs can treat the prices of the uncached programs
as a sufficiently large price to guarantee zero offloading probability for the
corresponding computation tasks.

According to the analysis in Stage II, we have

∂δ∗

∂π
=

−(M − 1)f(δ∗ + π)
f c + (M − 1)f(δ∗ + π)

. (27)

By substituting (27) into (26) and letting ∂UB

∂π = 0, we have

π∗ − [1 − F (δ∗ + π∗)]
f(δ∗ + π∗)

f c + (M − 1)f(δ∗ + π∗)
f c

= 0, (28)

which yields ωu(π∗) = 0.
Next, by analyzing the property of ωu(π), we demonstrate

the existence and uniqueness of the optimal price. According
to Theorem 1, we rewrite ωu(π) as

ωu(π) = δ∗(π) + π − [1 − F (δ∗(π) + π)]
f(δ∗(π) + π)

− 2(M − 1) [1 − F (δ∗(π) + π)] + 1
f c

. (29)

Based on Assumption 1, δ∗(π) + π − [1−F (δ∗(π)+π)]
f(δ∗(π)+π) in (29)

is an increasing function in δ∗(π) + π. Besides, the last term
− 2(M−1)[1−F (δ∗(π)+π)]+1

fc in (29) is an increasing function in
δ∗(π) + π. Therefore, all the terms in ωu(π) increase with
δ∗(π)+ π, implying that ωu(π) increases in δ∗(π)+ π. Then,
according to Proposition 4.1, δ∗(π) + π increases in π. Thus,
we have ωu(π) is an increasing function in π. Meanwhile,
when π = 0, we have

ωu(π = 0) = − [1 − F (δ∗)]
f(δ∗)

− (M − 1) [1 − F (δ∗)]
f c

< 0.

When π → +∞, we have ωu(π) → +∞. Together with the
result that ωu(π) is an increasing function, there must exist a
unique π∗ ∈ [0, +∞) that satisfies ωu(π∗) = 0.

With Proposition 6.1, given WDs’ equilibrium response
function δ∗(π), the optimal π∗ as the unique solution to (25)
can be efficiently obtained via a bi-section search over the
feasible price range π∗ ∈ [0, φ], where φ is a sufficiently large
real number. After obtaining the optimal uniform price in (P3),
the remaining optimization of (P3) is a standard Knapsack
problem, where off-the-shelf toolboxes can be applied to solve
the optimum in pseudo-polynomial time. For example, we can
adopt kp01(·) software package in MATLAB [19]. The details
of the proposed algorithm are summarized in Algorithm 2.

VII. MODEL AND RESULT EXTENSIONS

In this section, we extend the investigation to a general
case where θi’s are non-identically distributed. Specifically,
we denote the PDF and CDF of θi for the WDs with type-
j specific tasks as fj(·) and Fj(·), respectively. Similar to
Assumption 1 in Section IV, we assume that the distribution
of θi is regular. That is, y(θ) = θ − 1−Fj(θ)

fj(θ) is an increasing
function of continuous random variable θ for all j ∈ N .

Suppose that the edge CPU frequency allocated to each
offloaded task is proportional to its computation workload.
In this case, the task processing time of WD i at the edge
server is changed from (5) to

τc
i (m) =

Lϕi

Lϕif
c/(ΣjmjLj)

=
ΣjmjLj

f c
, (30)
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where mj is the number of type-j tasks offloaded to the edge
server for edge computing, i.e., mj = ΣM

i=1ui,jai.
In the following Theorem 2, we derive the optimal offload-

ing strategy for each WD with each task type at the Bayesian
equilibrium.

Theorem 2: A WD i with type-ϕi task will offload its task
to the BS if and only if

πϕi ≤ θi − δ∗ϕi
(π), (31)

where the equilibrium decision parameter δ∗ϕi
(π) is the same

for all the WDs with the same type-ϕi task, and the equilib-
rium decision parameters {δ∗ϕi

(π), ∀ϕi ∈ N} are the solutions
to (32), shown at the bottom of the page.

Proof: Note that all the WDs with type-j tasks other than
WD i (ϕi = j) choose to offload their tasks to the edge server
if and only if their valuations βz, z �= i, are larger than the
decision parameter δj > 0, j ∈ N . Then, WD i with type-j
task will offload its task if

θi − πj ≥ E

�
m�

j + 1 + Σk �=jmk
Lk

Lj

f c

�
, (33)

where m�
j is the number of the WDs with type-j tasks

other than WD i that choose edge computing, and follows
a binomial distribution B(qjM −1, 1−Fj(δj +πj)). Besides,
mk, k �= j represents the number of WDs with type-k tasks
that prefer edge computing and follows a binomial distribution
B(qkM, 1 − Fk(δk + πk)). Accordingly, for the RHS of the
inequlity (33), we have (34), shown at the bottom of the page.
At the equilibrium, we have the common decision parameter
δj for the WDs with type-j tasks as shown in (35), shown at
the bottom of the page.

Unlike Theorem 1, here we need to jointly determine N
equilibrium decision parameters by solving (32) in Stage II.

According to Theorem 2, we propose an iterative algo-
rithm to iteratively find the equilibrium decision parameters
{δj, j ∈ N}. Specifically, in the t-th iteration, the algorithm
finds the optimal {δ(t)

j , j ∈ N} according to (32) given

δ
(t−1)
−j = {δ(t−1)

k , k ∈ N \ j}. In the following corollary,

we show that there exists a unique {δ(t)
j , j ∈ N} in each

iteration t.
Corollary 7.1: Suppose that the other equilibrium decision

parameters δ
(t−1)
−j in the (t − 1)-th iteration are given. There

exists a unique δ
(t)
j , j ∈ N , that satisfies Φj(δ

(t)
j ) = 0 in the

t-th iteration.
Proof: The proof follows a similar technique in

Theorem 1 and we omit the details here.
According to Corollary 7.1, given δ

(t−1)
−j , we can efficiently

obtain the optimal equilibrium decision parameter δ
(t)
j for

j, j ∈ N , by a bi-section search method. The details of
the proposed iterative algorithm to determine the equilibrium
decision parameters are summarized in Algorithm 3.

Algorithm 3 Computation of the Equilibrium Decision Para-
meters in Stage II Under the Extended General Case

1: Initializes the equilibrium decision parameters as {δ(0)
j , j ∈

N};
2: Set t = 1;
3: repeat
4: for Each task’s type j ∈ N do
5: Apply bi-section search method to find δ

(t)
j that satisfies

Φj(δ
(t)
j ) = 0 with given δ

(t−1)
−j ;

6: end for
7: Obtain {δ(t)

j , j ∈ N};
8: Set t = t + 1.
9: until {δ∗j , j ∈ N} converges.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ1(δ1) := δ1 −
(q1M − 1)(1 − F1(δ1 + π1)) + 1 +

�
k∈N\{1} qkM(1 − Fk(δk + πk))Lk

L1

f c
= 0,

Φ2(δ2) := δ2 −
(q2M − 1)(1 − F2(δ2 + π2)) + 1 +

�
k∈N\{2} qkM(1 − Fk(δk + πk))Lk

L2

f c
= 0,

. . . ,

Φj(δj) := δj −
(qjM − 1)(1 − Fj(δj + πj)) + 1 +

�
k∈N\j qkM(1 − Fk(δk + πk))Lk

Lj

f c
= 0,

. . . ,

ΦN (δN ) := δN − (qNM − 1)(1 − FN (δN + πN )) + 1 +
�

k∈N\{N} qkM(1 − Fk(δk + πk)) Lk

LN

f c
= 0.

(32)

E

�
m�

j + 1 + Σk �=jmk
Lk

Lj

f c

�
=

(qjM − 1)(1 − Fj(δj + πj)) + 1 +
�

k∈N\j qkM(1 − Fk(δk + πk))Lk

Lj

f c
. (34)

δj =
(qjM − 1)(1 − Fj(δj + πj)) + 1 +

�
k∈N\j qkM(1 − Fk(δk + πk))Lk

Lj

f c
, ∀j ∈ N . (35)
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Based on the Bayesian equilibrium derived in Theorem 2,
we turn to the optimization of service caching and pricing in
Stage I. In this case, Problem (P1) in Stage I is expressed as

(P4) max
(π,x)

N�
j=1

(1 − Fj(δ∗j (π)+πj))xjqjMπjLj−
N�

j=1

xjrj ,

s.t.
N�

j=1

xjcj ≤ C,

xj ∈ {0, 1}, ∀j = 1, . . . , N. (36)

Note that once the prices are given, we apply the proposed
Algorithm 3 in Stage II to find the equilibrium decision
parameters {δ∗j , j ∈ N}. Then, the remaining optimization
problem in (P4) for the service caching decisions is a stan-
dard Knapsack problem. Based on that, we can apply some
meta-heuristic methods, e.g., particle swarm optimization [25],
to search the optimal service prices that achieve the maximum
objective value (the expected profit of BS) in Problem (P4) in
Stage I.

VIII. SIMULATION RESULTS

In this section, we conduct numerical simulations to evalu-
ate the performances of our proposed two-stage dynamic game
of incomplete information for service caching, pricing, and
task offloading in MEC systems. For simplicity of illustration,
we normalize the unit cost for acquiring each program as
rj = 1. Besides, we assume that the program sizes cj are
equal for all programs j, such that the caching space C at
the BS can easily tell the number of cached programs. θi is
assumed to follow a uniform distribution between −10×10−8

and 10 × 10−8. In general, most of the parameters chosen in
the simulation are based on the parameter setting of a typical
wireless network [27] and practical computing model [28].
Specifically, regarding the range of the random variable θi,
we consider that the peak computational CPU frequency of
WDs is 109 cycles/second as in [6]. Besides, for the wireless
channel gain hi following the free-space path loss model,
we have hi = Ad( 3·108

4πfcdi
)PL, where fc = 915 MHz is

the carrier frequency, Ad = 4.11 denotes the antenna gain,
PL = 3 denotes the pass loss exponent, and di in meters
denotes the distance between WD i and the BS. We assume
that the transmit power of the WDs is 100 mW, the bandwidth
W = 2 MHz, and the noise power σ2 = 10−10 W as in [4,5].
In addition, the input data size and the computation workload
of a task are usually several thousand Kbyte and several
hundred Mcycles, respectively [3-6]. Hence, by substituting
the above parameters into the equation (12), we find that the
quantity class of θi is at 10−8. Accordingly, we set the range
of the random variable θi as [−10 ∗ 10−8, 10 ∗ 10−8].

A. WDs’ Task Offloading Behaviors in Stage II

We first investigate the WDs’ task offloading behaviors in
Stage II. For illustration purpose, we consider a two-program
case (i.e., N = 2) in the following. We assume that there
are M = 100 WDs and the computation capability at the BS
f c = 108 cycles/second.

Fig. 3. Offloading probability as a function of π1 under different π2.

Fig. 4. Offloading probability as a function of fc under different numbers
of WDs M .

Fig. 3 illustrates the impact of different programs’ prices
on the offloading probabilities of two types of tasks, where
the program popularity {qj} = [0.5, 0.5]. Given the price
of program 2 in the first subfigure of Fig. 3, the offload-
ing probability of type-1 tasks decreases with π1. Besides,
increasing π2 leads to a higher offloading probability of type-1
tasks. It is due to the fact that increasing π2 reduces the
offloading probability of type-2 tasks, which makes more
computation resource available for computing the type-1
tasks. Nevertheless, the offloading probability of type-2 tasks
in the second subfigure of Fig. 3 shows an opposite trend,
where the offloading probability increases with π1 and
decreases with π2. An interesting observation is that when
π1 is high5 (e.g., above 4 × 10−8 when π2 = 2 × 10−8),
the offloading probability of type-2 tasks is fixed. It is because
the offloading probability of type-1 tasks drops to zero as
shown in the left subfigure of Fig. 3. In this case, further
increasing the price of program 1 does not affect the offloading
probability of type-2 tasks.

Fig. 4 studies the impact of the computation capability
on the offloading probability of each program’s tasks under
different number of WDs M , where the program popularity
{qj} = [0.5, 0.5]. We set equal price 5 × 10−8 for both

5In this article, the program prices are charged for unit CPU cycle. The
total payment π1L1 from the WD with type-1 task is nontrivial.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on September 09,2021 at 06:08:19 UTC from IEEE Xplore.  Restrictions apply. 



YAN et al.: PRICING-DRIVEN SERVICE CACHING AND TASK OFFLOADING IN MOBILE EDGE COMPUTING 4507

Fig. 5. The price for each program versus the popularity q1 in the two-program case.

programs, which leads to the same offloading probabilities of
different types of tasks. We observe that the WDs’ offloading
probability under each program increases in the edge server’s
CPU frequency f c. Besides, increasing M or WDs’ compe-
tition in sharing f c reduces the offloading probability. These
also coincide with our results in Proposition 4.2.

B. BS’ Service Caching and Pricing Strategies in Stage I

Then, we show the properties of BS’ service caching and
pricing strategies in Stage I for the considered two-program
case, where the BS is able to cache at most two programs,
i.e., C = 2.

In Fig. 5, we demonstrate the impact of program popularity
on the optimal prices, where f c = 108 cycles/s and M = 100.
For the uniform pricing heuristics, the uniform price is fixed
regardless of the program popularity as shown in Propo-
sition 6.1. For the differentiated pricing scheme, when the
workloads of two programs are equal (i.e., {Lj} = [300, 300]
Mcycles), we observe from Fig. 5(a) that if both programs are
cached, the prices of the two programs are the same and equal
to that in the uniform pricing heuristics. When the popularity
of program 1 is small (i.e., below 0.1), the BS does not cache
program 1 and sets a sufficiently large price (i.e., π1 = 10 ×
10−8) for program 1 to guarantee zero offloading probability
of type-1 tasks. It is because in this case, the BS’ profit
obtained by caching program 1 cannot compensate for the
program 1’s acquiring cost charged by the program provider.
Besides, as shown in Fig. 5(b), when the workloads of two
programs are different (i.e., {Lj} = [200, 300] Mcycles),
we can see that the BS always caches program 2 with larger
workload. It is due to the fact that higher total revenue L2π2 is
obtained for executing one type-2 task with larger workload.
As q1 is larger than 0.5, both programs 1 and 2 are cached and
the price of program 1 (lower workload) is higher than that
of program 2. Besides, we observe that, when both programs
are cached, with the increase of q1, both π1 and π2 decrease.
It is because q2 = 1 − q1 in this case and equivalently, π2

increases in q2, which coincides with our analytical results in
Proposition 5.4.

Fig. 6. The price for each program versus the edge computation capability
fc in the two-program case.

Furthermore, Fig. 6 illustrates the impact of edge
computation capability f c on the optimal prices, where
{Lj} = [200, 300] Mcycles, {qj} = [0.6, 0.4] and M = 100.
For the differentiated pricing scheme, it is observed that when
f c increases, the optimal price of the program 2 with larger
workload increases. It is because the BS always sets a lower
price for the program with larger workload in order to attract
more WDs interested in this program to offload. Accordingly,
as f c increases, the BS can decide a higher price π2 and obtain
a larger profit. However, the price π1 of the program 1 with
lower workload decreases in f c so as to incentivize offloading
of type-1 tasks since the BS has more spare computation
resource. In addition, we find that for a sufficiently large
f c, the prices of both programs tend to be the same, which
is consistence with Corollary 5.2. Besides, we observe that
the uniform price is in between the differentiated prices π1

and π2, as the uniform pricing heuristics is like an average
way to coordinate the two cached programs and guide task
offloading.
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Fig. 7. The expected profit of the BS versus edge computation capability fc under different WDs number M .

C. Performance Evaluation

We now evaluate and compare the performances of the
proposed pricing algorithms in term of gaining MEC service
profit for the BS. We assume that the WDs’ tasks belong to
N = 3 programs with popularity {qj} = [0.2, 0.4, 0.4]. Here,
we set C = 2 for at most two programs to cache.

Note that the uniform pricing heuristics (though easier and
more fair to implement in practice) yields smaller expected
profit for the BS. In Fig. 7, we present the expected profit of
the BS using the proposed differentiated pricing and uniform
pricing heuristics algorithms versus CPU frequency f c at the
edge server and the number of WDs M when the computing
workloads for the programs are {Lj} = [200, 200, 200]
(Mcycles) and {Lj} = [300, 200, 100] (Mcycles), respec-
tively. We observe that as f c or M increases, higher expected
profit of the BS is obtained under both differentiated pricing
scheme and uniform pricing heuristics, and uniform pricing
heuristics still gains most profit of the differentiated pricing
for different settings, telling the value to adopt simpler uniform
pricing heuristics in practice. The profit gap between differ-
entiated pricing upperbound and uniform pricing heuristics
increases as there are more WDs with greater M to tailor
for each program’s WDs. Besides, we observe that the per-
formance gap between the differentiated pricing scheme and
the uniform pricing heuristics in the equal workload scenario
is smaller than that in the different workload scenario, e.g.,
9.43% and 20.96% larger expected profit can be achieved by
the proposed differentiated pricing scheme compared to the
uniform pricing heuristics when M = 300, f c = 2 ∗ 109

and the programs have the same and different computation
workload, respectively. It is because when the programs have
the same workload, the optimal prices of the cached programs
are equal. In this case, the performance loss caused by uniform
pricing heuristics is only due to the approximation of the
equilibrium parameter δ∗(π) in Stage II assuming that all the
programs are cached and all the WDs are only informed of
the uniform price.

Furthermore, we use real-world data to compare the per-
formance of the proposed pricing algorithms with that of

Fig. 8. Comparisons of the BS’ expected profit performance for different
pricing algorithms under the traffic monitored at the BS with cell ID
10012 from 8 am to 1 pm on April 19th, 2004, at Milan, Italy [32].

the following two representative benchmarks used in the
literatures [29]–[31].

• Popularity-aware Service Caching: The BS caches the
most popular service programs to fully occupy its
storage [29].

• Linear Pricing: The BS charges the WDs with different
programs through a linear pricing model [30], [31].
Specifically, the price πj of program j is proportional to
the computation workload of program j, i.e., πj = χLj .
In this article, we set χ = 10−16. Note that the linear
pricing model is commonly used on Amazon EC2 and
Google [30], [31].

We test the performance on the real-world data traffic mon-
itored at a typical BS with cell ID 10012 from 8 am to 1 pm
on April 19th, 2004, at Milan, Italy [32]. It represents the
number of served WDs by the BS at each specific time slot,
which is time-varying within the period of interest. For each
time slot, the BS does not need to obtain new service data
for program j if it is already cached in the previous time slot,
i.e., the acquiring cost for program j is zero. Otherwise, the BS
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needs to acquire program j from the program provider with the
cost rj .

In Fig. 8, we compare the BS’ expected profit performances
under different pricing algorithms, where the edge server
CPU frequency f c = 108 cycles/second and the computing
workloads for the programs are {Lj} = [500, 150, 100]
(Mcycles). We observe from Fig. 8 that our proposed differen-
tiated pricing algorithm achieves 137.23% and 451.42% higher
expected profit than the popularity-aware service caching
and linear pricing schemes at 8 am, respectively. Besides,
as a simplified version of differentiated pricing scheme, our
proposed uniform pricing heuristics also outperforms the two
representative benchmarks, e.g., 36.05% and 216.24% higher
expected profit of the BS than the popularity-aware service
caching and linear pricing schemes at 8 am, respectively.
This demonstrates the effectiveness and the benefits by jointly
adapting selective program caching and pricing coordina-
tion for our proposed pricing algorithms on the real-world
scenario.

IX. CONCLUSION AND FUTURE WORK

This article has studied a pricing mechanism to coordinate
service caching and guide task offloading in an MEC system
with one BS and multiple associated WDs. We have proposed
a two-stage dynamic game of incomplete information to cap-
ture the interaction between the BS and WDs. In Stage I,
the BS aims to maximize its expected profit by optimizing its
service caching decisions and the programs prices for WDs’
task executions under the limited computation resource and
caching storage capacity. In Stage II, for given prices of service
programs, the WDs play a Bayesian subgame and selfishly
optimize offloading decisions to minimize their own costs by
estimating the other WDs’ decisions. We have first derived
the threshold-based offloading strategy among the WDs at
the Bayesian equilibrium. Then, by predicting the WDs’
offloading equilibrium, in Stage I, we have developed the
differentiated pricing algorithm and low-complexity uniform
pricing heuristics to optimize the prices and service caching
decisions at the BS. Simulation results have validated our
analysis and shown the effectiveness of our proposed pricing
mechanism.

Finally, we conclude the article with some future directions.
First, in a multiple edge server scenario, the multiple BSs
can share their cached service programs and collaboratively
serve the WDs. As the dimensionality of the problem increases
exponentially with the number of BSs, it is challenging to
extend the proposed pricing mechanism to the scenario with
cooperative service caching among the multiple BSs.6 Second,
it is challenging to consider the I/O interference for parallel
computing at the edge server [33], [34]. Third, it is also
interesting to consider the asynchronous offloading issue in
MEC systems [35].

6One tractable way to handle the multiple edge server scenario is that
suppose M WDs are equally divided into S groups and there are a number S
of BSs. Each WD can equally associate with these BSs. We define the WDs
in group s as those served by the s-th BS. Given the WDs in each group,
we similarly apply the same pricing mechanisms proposed in the article to
coordinate task offloading and service caching.

APPENDIX A
PROOF OF PROPOSITION 4.1

According to Theorem 1, we have Φ(πj , δ
∗(πj)) = 0.

By applying implicit function theorem, we have ∂Φ(δ∗)
∂πj

+
∂Φ(δ∗)

∂δ∗
∂δ∗
∂πj

= 0, ∀j ∈ N . That is,

M − 1
f c

�
qj

∂F (δ∗ + πj)
∂(δ∗ + πj)

�

+
∂δ∗

∂πj

�
1 +

M − 1
f c

�
j

qj
∂F (δ∗ + πj)
∂(δ∗ + πj)

�
= 0. (37)

Hence,

∂δ∗

∂πj
=

−(M − 1)qjf(δ∗ + πj)
f c + (M − 1)

�
j qjf(δ∗ + πj)

, ∀j ∈ N .

Therefore, for the relation between δ∗ + πj and πj , we have

∂(δ∗ + πj)
∂πj

= 1 − (M − 1)qjf(δ∗ + πj)
f c + (M − 1)

�
j qjf(δ∗ + πj)

> 0.

Besides, for the relation between δ∗ + πj and πk, k ∈ N \ j,
we have

∂(δ∗ + πj)
∂πk

=
∂δ∗

∂πk
=

−(M − 1)qkf(δ∗ + πk)
f c + (M − 1)

�
j qjf(δ∗ + πj)

< 0.

APPENDIX B
PROOF OF PROPOSITION 4.2

We first prove the relation between δ∗ and f c. Equation (16)
shows that Φ(δ∗) is increasing in f c. Recall that Φ(δ∗) is
increasing in δ∗. Based on Φ(f c, δ∗(f c)) = 0, by applying
implicit function theorem, we have ∂Φ(δ∗)

∂fc + ∂Φ(δ∗)
∂δ∗

∂δ∗
∂fc = 0.

Accordingly, we can derive ∂δ∗
∂fc = −∂Φ(δ∗)

∂fc /∂Φ(δ∗)
∂δ∗ < 0.

Thus, δ∗ is decreasing in f c. Accordingly, given the price
πj , δ∗ + πj also decreases in f c.

Then, we prove the relation between δ∗ and M . Equa-
tion (16) shows that Φ(δ∗) decreases with M . Suppose that
M1 < M2 and Φ(M1, δ

∗
1) = 0. Because Φ(δ∗) is increasing in

δ∗, to maintain Φ(M2, δ
∗
2) = 0, δ∗2 > δ∗1 must hold. Therefore,

δ∗ is increasing in M . Accordingly, given the price πj , δ∗+πj

also increases in M .

APPENDIX C
PROOF OF PROPOSITION 6.2

We prove the existence, uniqueness and optimality of the
solution, respectively.

Existence and uniqueness: According to (22),
we define (38), shown at the bottom of the next page.

According to Proposition 4.1 in Stage II, δ(π)+ π increases
in π. Therefore, under regular distribution assumption,
δ(π) + π − 1−F (δ(π)+π)

f(δ(π)+π) is an increasing function with

respect to π. Besides, − 2(M−1)(
�

j∈N̂ qj)(1−F (δ(π)+π))+1

fc

also increases in π. Hence, all terms in ωeq(π) increase in π,
thus ωeq(π) is an increasing function in π. Meanwhile, when
π = 0, we have ωeq < 0. When π → +∞, ωeq → +∞.
Thus, there exists a unique π∗ > 0 that satisfies ωeq(π∗) = 0.
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Optimality: By substituting (22) into ωd(πj) for each
cached program j, we have (39), shown at the bottom of
the page. Since the price and workload for each program
are equal, we have L1π

∗
1 = L2π

∗
2 = . . . = Ljπ

∗
j , ∀j ∈ N̂ .

Therefore, we have ωd(π∗
j ) = 0, ∀j ∈ N̂ . It completes the

proof.

APPENDIX D
PROOF OF PROPOSITION 6.3

Suppose that there are two programs j and k cached in the
BS with popularity qj and qk. From (17), the expected profit
of the BS is

UB =
θ̄ − (δ∗ + πj)

θ̄ − θ
qjMπjLj +

θ̄ − (δ∗ + πk)
θ̄ − θ

qkMπkLk.

According to Theorem 1, we can obtain the common
equilibrium parameter δ∗, (40) as shown at the bottom of the
page.

Then, for the optimal price of program j, the deriv-
ative of UB with respect to πj can be expressed
as

∂UB

∂πj
=

−( ∂δ∗
∂πj

+ 1)

θ̄ − θ
qjMπjLj +

θ̄ − (δ∗ + πj)
θ̄ − θ

qjMLj

+
− ∂δ∗

∂πj

θ̄ − θ
qkMπkLk,

where ∂δ∗
∂πj

= −(M−1)qj

fc(θ̄−θ)+(M−1)(qj+qk)
. By equating ∂UB

∂πj
= 0,

we have

π∗
j =

qk(M − 1)(Lj + Lk)
2Lj[qk(M − 1) + f c(θ̄ − θ)]

πk

+
A

2[qk(M − 1) + f c(θ̄ − θ)]
, (41)

where A = f cθ̄(θ̄ − θ) + (M − 1)(qj + qk)(θ̄ − θ) −
[(M − 1)(qj + qk) + 1](θ̄ − θ).

Similarly, we can obtain the optimal price for the cached
program k, i.e.,

π∗
k =

qj(M − 1)(Lj + Lk)
2Lk[qj(M − 1) + f c(θ̄ − θ)]

πj

+
A

2[qj(M − 1) + f c(θ̄ − θ)]
. (42)

By combining (41) and (42), we have (43), shown at the
bottom of the page, and (44), shown at the bottom of the
page. According to (43) and (44), when Lj = Lk, we have
π∗

j = π∗
k = θ̄

2 − 1
2fc . Besides, we calculate (45), shown at

the bottom of the page. Therefore, when Lj > Lk, we have
π∗

j < π∗
k. If Lj < Lk, π∗

j > π∗
k .

APPENDIX E
PROOF OF PROPOSITION 6.4

According to (43), we calculate the first derivative with
respect to qj , as shown in (46), as shown at the top of the next

page. If Lj > Lk, we have
∂π∗

j

∂qj
> 0, ∀qk > 0. If Lj < Lk,

ωeq(π) = π − 1 − F (δ(π) + π)
f(δ(π) + π)

− (M − 1)(
�

j∈N̂ qj)(1 − F (δ(π) + π))

f c

= δ(π) + π − 1 − F (δ(π) + π)
f(δ(π) + π)

− 2(M − 1)(
�

j∈N̂ qj)(1 − F (δ(π) + π)) + 1

f c
. (38)

ωd(πj) = qjMLj

�
[f c + (M − 1)

�
j∈N̂

qjf(δ∗ + πj)]
f c

f c + (M − 1)
�

j∈N̂ qjf(δ∗ + πj)
πj

− (f c + (M − 1)
�

k �=j,k∈N̂
qkf(δ∗ + πk))πj

�
+ (M − 1)qj

�
k �=j,k∈N̂

f(δ∗ + πk)qkMπkLk

= −(M − 1)qj

�
k �=j,k∈N̂

qkf(δ∗ + πk)MπjLj + (M − 1)qj

�
k �=j,k∈N̂

qkf(δ∗ + πk)MπkLk, ∀j ∈ N̂ . (39)

δ∗ =
[(M − 1)(qj + qk) + 1](θ̄ − θ) − (M − 1)[qj(πj − θ) + qk(πk − θ)]

f c(θ̄ − θ) + (M − 1)(qj + qk)
. (40)

π∗
j =

Lk[2Ljqj(M − 1) + 2Ljf
c(θ̄ − θ) + qk(M − 1)(Lj + Lk)]A

4LjLk[qjqk(M − 1)2 + f c(θ̄ − θ)(M − 1)(qj + qk) + (f c)2(θ̄ − θ)2] − qjqk(M − 1)2(Lj + Lk)2
, (43)

π∗
k =

Lj[2Lkqk(M − 1) + 2Lkf c(θ̄ − θ) + qj(M − 1)(Lj + Lk)]A
4LjLk[qjqk(M − 1)2 + f c(θ̄ − θ)(M − 1)(qj + qk) + (f c)2(θ̄ − θ)2] − qjqk(M − 1)2(Lj + Lk)2

. (44)

π∗
j − π∗

k =
A[qjLj(Lk − Lj) + qkLk(Lk − Lj)]

4LjLk[qjqk(M − 1)2 + f c(θ̄ − θ)(M − 1)(qj + qk) + (f c)2(θ̄ − θ)2] − qjqk(M − 1)2(Lj + Lk)2
. (45)
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∂π∗
j

∂qj
=

A(M − 1)2Lk(Lj − Lk)(Lj + Lk)qk[2Ljf
c(θ̄ − θ) + (M − 1)(Lj − Lk)qk]�

4LjLk[qjqk(M − 1)2 + f c(θ̄ − θ)(M − 1)(qj + qk) + (f c)2(θ̄ − θ)2] − qjqk(M − 1)2(Lj + Lk)2
�2 . (46)

when 0 < qk <
2fc(θ̄−θ)Lj

(Lk−Lj)(M−1) ,
∂π∗

j

∂qj
< 0. Otherwise,

we have
∂π∗

j

∂qj
> 0.
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