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Abstract— Opportunistic computation offloading is an effective
method to improve the computation performance of mobile-edge
computing (MEC) networks under dynamic edge environment.
In this paper, we consider a multi-user MEC network with
time-varying wireless channels and stochastic user task data
arrivals in sequential time frames. In particular, we aim to
design an online computation offloading algorithm to maximize
the network data processing capability subject to the long-term
data queue stability and average power constraints. The online
algorithm is practical in the sense that the decisions for each time
frame are made without the assumption of knowing the future
realizations of random channel conditions and data arrivals.
We formulate the problem as a multi-stage stochastic mixed
integer non-linear programming (MINLP) problem that jointly
determines the binary offloading (each user computes the task
either locally or at the edge server) and system resource allocation
decisions in sequential time frames. To address the coupling
in the decisions of different time frames, we propose a novel
framework, named LyDROO, that combines the advantages of
Lyapunov optimization and deep reinforcement learning (DRL).
Specifically, LyDROO first applies Lyapunov optimization to
decouple the multi-stage stochastic MINLP into deterministic
per-frame MINLP subproblems. By doing so, it guarantees to
satisfy all the long-term constraints by solving the per-frame
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subproblems that are much smaller in size. Then, LyDROO
integrates model-based optimization and model-free DRL to solve
the per-frame MINLP problems with very low computational
complexity. Simulation results show that under various network
setups, the proposed LyDROO achieves optimal computation
performance while stabilizing all queues in the system. Besides,
it induces very low computation time that is particularly suitable
for real-time implementation in fast fading environments.

Index Terms— Mobile edge computing, resource allocation,
Lyapunov optimization, deep reinforcement learning.

I. INTRODUCTION

A. Motivations and Summary of Contributions

THE emerging mobile-edge computing (MEC) technology
is widely recognized as a key solution to enhance the

computation performance of wireless devices (WDs) [2], espe-
cially for size-constrained IoT (Internet of Things) devices
with low on-device battery and computing capability. With
MEC servers deployed at the edge of radio access networks,
e.g., cellular base stations, WDs can offload intensive compu-
tation tasks to the edge server (ES) in the vicinity to reduce
the computation energy and time cost. Compared to the naive
scheme that offloads all the tasks for edge execution, oppor-
tunistic computation offloading, which dynamically assigns
tasks to be computed either locally or at the ES, has shown
significant performance improvement under time-varying net-
work conditions, such as wireless channel gains [3], harvested
energy level [4], task input-output dependency [5], and edge
caching availability [6], etc.

There have been extensive studies on opportunistic com-
putation offloading to optimize the computation performance
of multi-user MEC networks [5]–[9]. In general, it involves
solving a mixed integer non-linear programming (MINLP) that
jointly determines the binary offloading (i.e., either offloading
the computation or not) and the communication/computation
resource allocation (e.g., task offloading time and local/edge
CPU frequencies) decisions. Solving such problems typi-
cally requires prohibitively high computational complexity
especially in large-size networks. Accordingly, many works
have focused on designing reduced-complexity sub-optimal
algorithms, such as local-search based heuristics [5], [8],
decomposition-oriented search [8], and convex relaxations
of the binary variables [9], [25], etc. However, aside from
performance losses, the above sub-optimal algorithms still
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require a large number of numerical iterations to produce
a satisfying solution. In practice, the MINLP needs to be
frequently re-solved once the system parameters, such as wire-
less link quality, vary. It is therefore too costly to implement
the conventional optimization algorithms in a highly dynamic
MEC environment.

The recent development of data-driven deep reinforcement
learning (DRL) provides a promising alternative to tackle the
online computation offloading problem. In a nutshell, the DRL
framework takes a model-free approach that uses deep neural
networks (DNNs) to directly learn the optimal mapping from
the “state” (e.g., time-varying system parameters) to the
“action” (e.g., offloading decisions and resource allocation)
to maximize the “reward” (e.g., data processing rate) via
repeated interactions with the environment [10]. It eliminates
the complicated computation of MINLP and automatically
learns from the past experience on-the-fly without requiring
manually labeled training data samples, and thus is particularly
advantageous for online implementation. Many studies have
applied DRL techniques to design online offloading algorithms
in MEC networks [11]–[20]. In particular, our previous work
[18] proposes a hybrid framework, named DROO (Deep
Reinforcement learning-based Online Offloading), to combine
the advantages of conventional model-based optimization and
model-free DRL methods. DROO implements a DNN to
produce binary offloading decisions based on the input envi-
ronment parameters such as channel conditions. The candidate
offloading solutions are then fed into a model-based optimiza-
tion module, which accordingly optimizes the communica-
tion/computation resource allocation and outputs an accurate
estimate of the reward value for each candidate offloading
decision. The integrated learning and optimization approach
leads to more robust and faster convergence of the online
training process, thanks to the accurate estimation of reward
values corresponding to each sampled action.

Apart from optimizing the computation performance, it is
equally important to guarantee stable system operation, such as
data queue stability and average power consumption. However,
most of the existing DRL-based methods do not impose
long-term performance constraints (e.g., [11]–[20]). Instead,
they resort to heuristic approaches that discourage unfavorable
actions in each time frame by introducing penalty terms
related to, for example, packet drop events [14], [15] and
energy consumption [12], [20]. A well-known framework
for online joint utility maximization and stability control
is Lyapunov optimization [21]. It decouples a multi-stage
stochastic optimization to sequential per-stage determinis-
tic subproblems, while providing theoretical guarantee to
long-term system stability. Some recent works have applied
Lyapunov optimization to design computation offloading strat-
egy in MEC networks (e.g., [22]–[26]). However, it still
needs to solve a hard MINLP in each per-stage subproblem
to obtain the joint binary offloading and resource alloca-
tion decisions. To tackle the intractability, some works have
designed reduced-complexity heuristics, such as continuous
relaxation in [25] and decoupling heuristic in [26]. This, how-
ever, suffers from the similar performance-complexity tradeoff
dilemma as in [5], [6], [8], [9].

Fig. 1. The considered multi-user MEC network in a tagged time frame.

In this paper, we consider a multi-user MEC network
in Fig. 1, where the computation task data arrive at the
WDs’ data queues stochastically in sequential time frames.
We aim to design an online computation offloading algorithm,
in the sense that the decisions for each time frame are made
without the assumption of knowing the future realizations of
random channel conditions and data arrivals. The objective is
to maximize the network data processing capability subject
to the long-term data queue stability and average power con-
straints. To tackle the problem, we propose a Lyapunov-guided
Deep Reinforcement learning (DRL)-based Online Offload-
ing (LyDROO) framework that combines the advantages
of Lyapunov optimization and DRL. Under fast-varying
channel fading and dynamic task arrivals, LyDROO can
make online optimal decisions in real time, while guaran-
teeing the long-term system stability. To the authors’ best
knowledge, this is the first work that combines Lyapunov
optimization and DRL for online computation offloading
design in MEC networks. The main contributions of the
paper are:

• Online stable computation offloading design: Considering
random fading channels and data arrivals, we formulate
the problem as a multi-stage stochastic MINLP to max-
imize the long-term average weighted sum computation
rate (i.e., the number of processed bits per second) of
all the WDs, subject to the queue stability and aver-
age power constraints. In particular, we will make the
optimal offloading and resource allocation decisions in
each time frame without the assumption of knowing
the future realizations of random channel conditions and
data arrivals.

• Integrated Lyapunov-DRL framework: To tackle the prob-
lem, we propose a novel LyDROO framework that
combines the advantages of Lyapunov optimization and
DRL. In particular, we first apply Lyapunov optimiza-
tion to decouple the multi-stage stochastic MINLP
into per-frame deterministic MINLP problems. Then in
each frame, we integrate model-based optimization and
model-free DRL to solve the per-frame MINLP problems
with very low computational complexity. In particular,
we show that the proposed LyDROO framework not only
ensures the long-term queue stability and average power
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constraints, but also obtains the optimal computation rate
performance in an online fashion.

• Integrated optimization and learning: LyDROO adopts
an actor-critic structure to solve the per-frame MINLP
problem. The actor module is a DNN that learns the
optimal binary offloading action based on the input
environment parameters including the channel gains and
queue backlogs of all the WDs. The critic module eval-
uates the binary offloading action by analytically solving
the optimal resource allocation problem. Compared to the
conventional actor-critic structure that uses a model-free
DNN in the critic module, the proposed approach takes
advantage of model information to acquire accurate eval-
uation of the action, and thus enjoying more robust and
faster convergence of the DRL training process.

• Balanced exploration and exploitation: LyDROO deploys
a noisy order-preserving quantization method to gen-
erate offloading action, which elegantly balances the
exploration-exploitation tradeoff (i.e., performance or
diversity oriented) in the DRL algorithm design to
ensure fast training convergence. Besides, the quantiza-
tion method can adaptively adjust its parameter during
the training process, which yields significant reduction
in computational complexity without compromising the
convergence performance.

Simulation results show that the proposed LyDROO algo-
rithm converges very fast to the optimal computation rate while
meeting all the long-term stability constraints. Compared to
a myopic benchmark algorithm that greedily maximizes the
computation rate in each time frame, the proposed LyDROO
achieves a much larger stable capacity region that can stabilize
the data queues under much heavier task data arrivals and more
stringent power constraint.

B. Related Works

Binary and partial computation offloading are two com-
mon offloading models in edge computing systems. While
the former requires the entire dataset of a computation task
to be processed as a whole either locally at a wireless
device (WD) or remotely at the edge server, the latter allows
the dataset to be partitioned and executed in parallel at both
the WD and the edge server [2]. In this paper, we focus
on the design of online binary offloading strategy, which
is widely adopted in IoT networks for executing simple
computation tasks with non-partitionable dataset. Meanwhile,
we discuss in Section VII the application of the proposed
LyDROO scheme to design online partial offloading strategy
when the computation task consists of multiple independent
subtasks.

Reduced-complexity algorithms have been widely explored
in the literature to tackle the intractability of combinatorial
computation offloading problem in multi-user MEC networks
adopting binary offloading model. For instance, [7] considers
WDs offloading their tasks to the neighboring nodes that arrive
and departure in random. It formulates an online stopping
problem and proposes a low-complexity algorithm, where each
WD individually selects the best set of neighboring nodes

in an online manner to minimize the worst-case computa-
tion latency. The proposed method, however, is not suitable
for optimizing a long-term average objective considered in
this paper. [8] proposes a coordinate descent method that
iteratively finds the local-optimum by flipping the binary
offloading decision of one user at a time. [5] applies Gibbs
sampling to search the decision space in a stochastic manner.
To reduce the search dimensions, [8] proposes an ADMM
(alternating direction method of multipliers) based method that
decomposes the original combinatorial optimization into par-
allel one-dimension sub-problems. Besides the search-based
meta-heuristic algorithms, existing work has also applied
convex relaxation to handle the binary variables, such as
linear relaxation [8], [25] and quadratic approximation [9]. The
aforementioned optimization methods, however, inevitably
encounter the performance-complexity tradeoff dilemma when
handling integer variables, and are not suitable for online
implementation that requires consistently high solution quality
under fast-varying environment.

DRL has recently appeared as a promising alternative to
solve online computation offloading problems in MEC net-
works. Existing DRL-based methods take either value-based or
policy-based approach to learn the optimal mapping from the
“state” (e.g., time-varying system parameters) to the “action”
(e.g., offloading decisions and resource allocation). Commonly
used value-based DRL methods include deep Q-learning net-
work (DQN) [11]–[13], double DQN [14] and dueling DQN
[15], where a DNN is trained to estimate the state-action value
function. However, DQN-based methods are costly when the
number of possible discrete offloading actions is large, e.g.,
exponential in the number of WDs. To resolve this issue,
recent works have applied policy-based approach, such as the
actor-critic DRL [16]–[18] and the deep deterministic policy
gradient (DDPG) methods [19], [20], to directly construct the
optimal mapping policy from the input state to the output
action using a DNN. For example, [19] considers a WD taking
only discrete offloading actions, including integer offloading
decision and discredited transmit power and offloading rate,
and applies an actor-critic DRL method to learn the optimal
mapping from continuous input state to the discrete output
actions. [18] and [20] train two separate learning modules to
generate discrete offloading decision and continuous resource
allocation sequentially. Specifically, [20] applies an actor DNN
to generate the resource allocation solution, concatenated by
a DQN-based critic network to select the discrete offloading
action. Similar to [11]–[15], the estimation of state-action
value function in the critic network is difficult when the num-
ber of possible offloading actions is large. On the other hand,
the DROO framework proposed in [18] uses an actor DNN
to generate a small number of binary offloading decisions,
followed by a model-based critic module that selects the best
action by analytically solving the optimal resource allocation
problem. Thanks to the accurate evaluation of action acquired
by the critic module, DROO enjoys fast convergence to the
optimal solution even when the actor DNN provides very few
actions (e.g., two actions after sufficient iterations) for the
critic to select from. In this paper, we embed DROO in the
LyDROO framework to solve the per-frame MINLP problems.
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Fig. 2. Organization of the paper.

The above DRL-based methods fail to address the long-term
performance requirements, e.g., queue stability and average
power, under random environments. In this regard, recent stud-
ies have applied Lyapunov optimization to design an online
offloading strategy with long-term performance guarantee
[22]–[26]. Lyapunov optimization decouples the multi-stage
stochastic problem to per-frame deterministic subproblems.
For each per-frame subproblem, [22] considers the binary
offloading decision of a single WD. Likewise, [23] schedules
only one user to offload to one of the multiple ESs in each time
frame. In both cases, the number of binary offloading variables
is very small, and hence the optimal solution can be obtained
by brute force search. [24]–[26] consider joint offloading
decisions of multiple users. Unlike the binary offloading policy
considered in this paper, [24] allows the WDs to process
task data in parallel both locally and at the ES, and applies
convex optimization to solve the continuous joint offloading
and resource allocation problem. In contrast, [25] and [26]
adopt binary offloading policy where the number of possible
offloading solutions grows exponentially with the user number.
To tackle the combinatorial problem, [25] relaxes the binary
variables into continuous ones. [26] proposes a two-stage
heuristic, which first fixes the resource allocation and then
obtains the binary offloading decisions using matching theory.
However, these heuristic methods cannot guarantee consis-
tently high solution quality, which may eventually degrade the
long-term performance.

In Fig. 2, we illustrate the organization of the rest of the
paper. In Section II, we formulate the stable computation
offloading problem as a multi-stage stochastic MINLP problem
(P1). In Section III, we apply the Lyapunov optimization to
decouple (P1) into per-frame deterministic MINLP subprob-
lem (P2). In Section IV, we introduce the LyDROO algorithm
to solve (P2) using an actor-critic DRL. The actor module
implements a DNN to solve the binary offloading subproblem
(P3) and the critic module applies a customized optimization
algorithm to solve the continuous resource allocation prob-
lem (P4). In Section V, we analyze the performance of the
LyDROO algorithm. In Section VI, we evaluate the proposed
algorithm via extensive simulations. Finally, we conclude the
paper in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, we consider an ES assisting the
computation of N WDs in sequential time frames of equal

duration T . Within the tth time frame, we denote At
i (in bits)

as the raw task data arrival at the data queue of the ith WD.
We assume that the arrival At

i follows a general i.i.d. distrib-

ution with bounded second order moment, i.e., E

[
(At

i)
2
]

=
ηi <∞, for i = 1, · · · , N . We assume that the value of ηi is
known, e.g., by estimating from past observations. We denote
the channel gain between the ith WD and the ES as ht

i. Under
the block fading assumption, ht

i remains constant within a time
frame but varies independently across different frames.

In the tth time frame, suppose that a tagged WD i processes
Dt

i bits data and produces a computation output at the end of
the time frame. In particular, we assume that the WDs adopt
a binary computation offloading rule [2]. That is, within each
time frame, the raw data must be processed either locally at
the WD or remotely at the ES. For instance, WD 1 and 3
offload their tasks while WD 2 computes locally in Fig. 1.
The offloading WDs share a common bandwidth W for
transmitting the task data to the ES in a TDMA manner.
We use a binary variable xt

i to denote the offloading decision,
where xt

i = 1 and 0 denote that WD i performs computation
offloading and local computing, respectively.

When the WD processes the data locally (xt
i = 0),

we denote the local CPU frequency as f t
i , which is upper

bounded by fmax
i . The raw data (in bits) processed locally

and the consumed energy within the time frame are [2]

Dt
i,L = f t

iT/φ, E
t
i,L = κ

(
f t

i

)3
T, ∀xt

i = 0, (1)

respectively. Here, parameter φ > 0 denotes the number of
computation cycles needed to process one bit of raw data and
κ > 0 denotes the computing energy efficiency parameter.

Otherwise, when the data is offloaded for edge execution
(xt

i = 1), we denote P t
i as the transmit power constrained by

the maximum power P t
i ≤ Pmax

i and τ t
i T as the amount of

time allocated to the ith WD for computation offloading. Here,
τ t
i ∈ [0, 1] and

∑N
i=1 τ

t
i ≤ 1. The energy consumed on data

offloading is Et
i,O = P t

i τ
t
i T . Similar to [4] and [8], we neglect

the delay on edge computing and result downloading such
that the amount of data processed at the edge within the time
frame is

Dt
i,O =

Wτ t
i T

vu
log2

(
1 +

P t
i h

t
i

N0

)

=
Wτ t

i T

vu
log2

(
1 +

Et
i,Oh

t
i

τ t
i TN0

)
, ∀xt

i = 1, (2)

where vu ≥ 1 denotes the communication overhead and N0

denotes the noise power.
Let Dt

i � (1−xt
i)D

t
i,L +xt

iD
t
i,O and Et

i � (1−xt
i)E

t
i,L +

xt
iE

t
i,O denote the bits computed and energy consumed in

time frame t. We define computation rate rt
i and power

consumption et
i in the tth time frame as

rt
i =

Dt
i

T
=

(1− xt
i)f

t
i

φ
+ xt

i

Wτ t
i

vu
log2

(
1 +

et
i,Oh

t
i

τ t
iN0

)
,

et
i =

Et
i

T
= (1− xt

i)κ
(
f t

i

)3 + xt
ie

t
i,O, (3)

where et
i,O � Et

i,O/T . For simplicity of exposition, we assume
T = 1 without loss of generality in the following derivations.
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Let Qi(t) denote the queue length of the ith WD at the
beginning of the tth time frame. Then, the queue dynamics
can be modeled as

Qi(t+ 1) = max
{
Qi(t)− D̃t

i +At
i, 0
}
, i = 1, 2, · · · , (4)

where D̃t
i = min (Qi(t), Dt

i) and Qi(1) = 0. In this paper,
we consider infinite queueing capacity for analytical tractabil-
ity. In the following derivation, we enforce the data causality
constraint Dt

i ≤ Qi(t), implying that Qi(t) ≥ 0 holds for any
t. Thus, the queue dynamics is simplified as

Qi(t+ 1) = Qi(t)−Dt
i +At

i, i = 1, 2, · · · . (5)

Definition 1: A discrete time queue Qi(t) is strongly stable
if the time average queue length limK→∞ 1

K
�K

t=1E [Qi(t)] <
∞, where the expectation is taken with respect to the system
random events [21], i.e., channel fading and task data arrivals
in this paper.

By the Little’s law, the average delay is proportional to
the average queue length. Thus, a strongly stable data queue
translates to a finite processing delay of each task data bit.

B. Problem Formulation

In this paper, we aim to design an online algorithm to
maximize the long-term average weighted sum computation
rate of all the WDs under the data queue stability and average
power constraints. In particular, we make online decisions
in the sense that in each time frame, we optimize the task
offloading and the resource allocation decisions for the par-
ticular time frame without the assumption of knowing the
future realizations of random channel conditions and data
arrivals. We denote xt = [xt

1, · · · , xt
N ], τ t = [τ t

1, · · · , τ t
N ],

f t = [f t
1, · · · , f t

N ] and et
O =

[
et
1,O, · · · , et

N,O

]
, and let

x = {xt}Kt=1, τ = {τ t}Kt=1, f = {f t}Kt=1 and eO = {et
O}Kt=1.

We formulate the problem as the following multi-stage sto-
chastic MINLP problem (P1):

maximize
x,τ ,f ,eO

lim
K→∞

1
K
·∑K

t=1

∑N
i=1cir

t
i

subject to
∑N

i=1τ
t
i ≤ 1, ∀t, (6a)

(1 − xt
i)f

t
i /φ+ xt

i

Wτ t
i

vu

log2

(
1 +

et
i,Oh

t
i

τ t
iN0

)
≤ Qi(t), ∀i, t, (6b)

lim
K→∞

1
K
·∑K

t=1

E

[
(1− xt

i)κ
(
f t

i

)3 + xt
ie

t
i,O

]
≤ γi, ∀i, (6c)

lim
K→∞

1
K
·∑K

t=1E [Qi(t)] <∞, ∀i, (6d)

f t
i ≤ fmax

i , et
i,O ≤ Pmax

i τ t
i , ∀i, t, (6e)

xt
i ∈ {0, 1} , τ t

i , f
t
i , e

t
i,O ≥ 0, ∀i, t. (6f)

Here, ci denotes the fixed weight of the ith WD. (6a) denotes
the offloading time constraint. Notice that τ t

i = et
i,O = 0 must

hold at the optimum if xt
i = 0. Similarly, f t

i = 0 must hold
if xt

i = 1. (6b) corresponds to the data causality constraint.
(6c) corresponds to the average power constraint and γi is
the power threshold. (6d) are the data queue stability con-
straints. Under the stochastic channels and data arrivals, it is
hard to satisfy the long-term constraints when the decisions
are made in each time frame without knowing the future
realizations of random channel conditions and data arrivals.
Besides, the fast-varying channel condition requires real-time
decision-making in each short time frame, e.g., within the
channel coherence time. In the following, we propose a
novel LyDROO framework that solves (P1) with both high
robustness and efficiency.

Remark 1: Before leaving this session, we comment on
the possible extension of the proposed LyDROO algorithm.
(P1) uses a linear utility function U (rt

i) = rt
i in the

objective. However, we will show later in Section IV that
the proposed LyDROO framework is applicable to solve a
wide range of problems as long as the resource allocation
problem (P4) can be efficiently solved. For instance, we can
consider a general non-decreasing concave function U (rt

i)
such that the corresponding (P4) is a convex problem, e.g.,
α-fairness function (1 − α)−1 (rt

i)
1−α with α ≥ 0 and

α �= 1, proportional fairness function ln(rt
i), or other suitable

QoS (quality of service) utilities (see [27] and the reference
therein). For analytical clarity, we consider in this paper a
specific linear utility function to highlight the features of the
LyDROO framework.

III. LYAPUNOV-BASED DECOUPLING OF THE

MULTI-STAGE MINLP

In this section, we apply the Lyapunov optimization to
decouple (P1) into per-frame deterministic problems. To cope
with the average power constraints (6c), we introduce N vir-
tual energy queues {Yi(t)}Ni=1, one for each WD. Specifically,
we set Yi(1) = 0 and update the queue as

Yi(t+ 1) = max
(
Yi(t) + νet

i − νγi, 0
)
, (7)

for i = 1, · · · , N and t = 1, · · · ,K , where et
i in (3) is the

energy consumption at the tth time frame and ν is a positive
scaling factor. Yi(t) can be viewed as a queue with random
“energy arrivals” νet

i and fixed “service rate” νγi. Intuitively,
when the virtual energy queues are stable, the average power
consumption et

i (i.e., the virtual queue arrival rate) does not
exceed γi, and thus the constraints in (6c) are satisfied.

To jointly control the data and energy queues, we define
Z(t) = {Q(t),Y(t)} as the total queue backlog, where
Q(t) = {Qi(t)}Ni=1 and Y(t) = {Yi(t)}Ni=1. Then, we intro-
duce the Lyapunov function L (Z(t)) and Lyapunov drift
ΔL (Z(t)) as [21]

L (Z(t)) = 0.5
(∑N

i=1Qi(t)2 +
∑N

i=1Yi(t)2
)
,

ΔL (Z(t)) = E {L (Z(t+ 1))− L (Z(t)) |Z(t)} . (8)

To maximize the time average computation rate while stabiliz-
ing the queue Z(t), we use the drift-plus-penalty minimization
approach [28]. Specifically, we seek to minimize an upper
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bound on the following drift-plus-penalty expression at every
time frame t:

Λ (Z(t)) � ΔL (Z(t))−V ·∑N
i=1E

{
cir

t
i |Z(t)

}
, (9)

where V > 0 is an “importance” weight to scale the penalty.
In the following, we derive an upper bound of Λ (Z(t)).

To begin with, we have

Qi(t+ 1)2 = Qi(t)2 + 2Qi(t)
(
At

i −Dt
i

)
+
(
At

i −Dt
i

)2
,

Yi(t+ 1)2 = Yi(t)2 + 2Yi(t)
(
et

i − γi

)
+
(
et

i − γi

)2
.

By taking the sum over the N queues on both sides, we have

0.5
∑N

i=1Qi(t+ 1)2 − 0.5
∑N

i=1Qi(t)2

= 0.5
∑N

i=1

(
At

i −Dt
i

)2 +
∑N

i=1Qi(t)
(
At

i −Dt
i

)
(10)

and

0.5
∑N

i=1Yi(t+ 1)2 − 0.5
∑N

i=1Yi(t)2

= 0.5
∑N

i=1

(
et

i − γi

)2 +
∑N

i=1Yi(t)
(
et

i − γi

)
. (11)

We define

L (Q(t)) � 0.5
∑N

i=1Qi(t)2 (12)

and

ΔL (Q(t)) � E {L (Q(t+ 1))− L (Q(t)) |Z(t)} . (13)

By taking the conditional expectation on both sides of (10),
we have

ΔL (Q(t)) ≤ B1 +
∑N

i=1Qi(t)E
[(
At

i −Dt
i

) |Z(t)
]
. (14)

Here, B1 is a constant obtained as

0.5
∑N

i=1E

[(
At

i −Dt
i

)2] ≤ 0.5
∑N

i=1E

[(
At

i

)2 +
(
Dt

i

)2]
≤ 0.5

∑N
i=1

(
ηi + [T max {fmax

i /φ, rmax
i }]2

)
� B1,

where the second inequality holds because rmax
i �

E

[
W
vu

log2

(
1 + P max

i ht
i

N0

)]
corresponds to the maximum aver-

age transmission rate of the ith WD.
Similarly, we define

L (Y(t)) = 0.5
∑N

i=1Yi(t)2 (15)

and

ΔL (Y(t)) � E {L (Y(t + 1))− L (Y(t)) |Z(t)} . (16)

We obtain the following by taking the expectation on both
sides of (11)

ΔL (Y(t)) ≤ B2 +
∑N

i=1Yi(t)E
[
et

i − γi|Z(t)
]
, (17)

where the constant B2 is obtained from

0.5
∑N

i=1E

[(
et

i − γi

)2]
≤ 0.5

∑N
i=1

[(
max

{
κ (fmax

i )3 , Pmax
i

})2

+ γ2
i

]
� B2.

Summing over the two inequalities in (14) and (17), we have

ΔL (Z(t)) ≤ B̂ +
∑N

i=1Qi(t)E
[(
At

i −Dt
i

) |Z(t)
]

+
∑N

i=1Yi(t)E
[
et

i − γi|Z(t)
]

(18)

where B̂ = B1 +B2. Therefore, the upper bound of the drift-
plus-penalty expression in (9) is

B̂ +
∑N

i=1

{
Qi(t)E

[(
At

i −Dt
i

) |Z(t)
]

+Yi(t)E
[
et

i − γi|Z(t)
]−V E

[
cir

t
i |Z(t)

] }
. (19)

In the tth time frame, we apply the technique of oppor-
tunistic expectation minimization [21]. That is, we observe
the queue backlogs Z(t) and decide the joint offloading and
resource allocation control action accordingly to minimize the
upper bound in (19). Notice that only the second term is related
to the control action in the tth time frame. By removing the
constant terms from the observation at the beginning of the tth
time frame, the algorithm decides the actions by maximizing
the following:∑N

i=1 (Qi(t) + V ci) rt
i −

∑N
i=1Yi(t)et

i, (20)

where rt
i and et

i are in (3). Intuitively, it tends to increase the
computation rates of WDs that have a long data queue backlog
or a large weight, while penalizing those that have exceeded
the average power threshold. We introduce an auxiliary vari-
able rt

i,O for each WD i and denote rt
O =

{
rt
i,O

}N

i=1
. Taking

into account the per-frame constraints, we solve the following
deterministic per-frame subproblem (P2) in the tth time frame

maximize
xt,τ t,ft,et

O,rt
O

∑N
i=1 (Qi(t) + V ci) rt

i −
∑N

i=1Yi(t)et
i

subject to
∑N

i=1τ
t
i ≤ 1, (21a)

f t
i /φ ≤ Qi(t), rt

i,O ≤ Qi(t), ∀i, (21b)

rt
i,O ≤

Wτ t
i

vu
log2

(
1 +

et
i,Oh

t
i

τ t
iN0

)
, ∀i, (21c)

f t
i ≤ fmax

i , et
i,O ≤ Pmax

i τ t
i , ∀i, (21d)

xt
i ∈ {0, 1} , τ t

i , f
t
i , e

t
i,O ≥ 0, ∀i. (21e)

Notice that the above constraints (21b) and (21c) are equiva-
lent to (6b) in (P1), because there is exactly one non-zero term
in the left-hand side of (6b) at the optimum. In Section V,
we will show that we can satisfy all long-term constraints
in (P1) by solving the per-frame subproblems in an online
fashion. Then, the remaining difficulty lies in solving the
MINLP (P2) in each time frame. In the following section,
we propose a DRL-based algorithm to solve (P2) efficiently.

IV. LYAPUNOV-GUIDED DRL FOR ONLINE

COMPUTATION OFFLOADING

Recall that to solve (P2) in the tth time frame, we observe
ξt � {ht

i, Qi(t), Yi(t)}Ni=1, consisting of the channel gains
{ht

i}Ni=1 and the system queue states {Qi(t), Yi(t)}Ni=1, and
accordingly decide the control action {xt,yt}, including the
binary offloading decision xt and the continuous resource
allocation yt �

{
τ t
i , f

t
i , e

t
i,O, r

t
i,O

}N

i=1
. A close observation

shows that although (P2) is a non-convex optimization prob-
lem, the resource allocation problem to optimize yt is in fact
an “easy” convex problem if xt is fixed. In Section IV.B,
we will propose a customized algorithm to efficiently obtain
the optimal yt given xt in (P2). Here, we denote G

(
xt, ξt

)
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as the optimal value of (P2) by optimizing yt given the
offloading decision xt and parameter ξt. Therefore, solving
(P2) is equivalent to finding the optimal offloading decision
(xt)∗, where

(P3) :
(
xt
)∗ = arg maximize

xt∈{0,1}N
G
(
xt, ξt

)
. (22)

In general, obtaining (xt)∗ requires enumerating 2N

offloading decisions, which leads to significantly high compu-
tational complexity even when N is moderate (e.g., N = 10).
Other search based methods, such as branch-and-bound and
block coordinate descent [29], are also time-consuming when
N is large. In practice, neither method is applicable to online
decision-making under fast-varying channel condition. Lever-
aging the DRL technique, we propose a LyDROO algorithm
to construct a policy π that maps from the input ξt to the
optimal action (xt)∗, i.e., π : ξt �→ (xt)∗, with very low
complexity, e.g., tens of milliseconds computation time (i.e.,
the time duration from observing ξt to producing a control
action {xt,yt}) when N = 10.

A. Algorithm Description

As illustrated in Fig. 3, LyDROO consists of four main
modules: an actor module that accepts the input ξt and outputs
a set of candidate offloading actions {xt

i}, a critic module
evaluates {xt

i} and selects the best offloading action xt, a pol-
icy update module improves the policy of the actor module
over time, and a queueing module updates the system queue
states {Qi(t), Yi(t)}Ni=1 after executing the offloading actions.
Through repeated interactions with the random environment
{ht

i, A
t
i}Ni=1, the four modules operate in a sequential and

iterative manner as detailed below.
1) Actor Module: The actor module consists of a DNN

and an action quantizer. At the beginning of the tth time
frame, we denote the parameter of the DNN as θt, which is
randomly initialized following the standard normal distribution
when t = 1. Taking the observation ξt as the input, the DNN
outputs a relaxed offloading decision x̂t ∈ [0, 1]N that is later
to be quantized into feasible binary actions. The input-output
relation is expressed as

Πθt : ξt �→ x̂t =
{
x̂t

i ∈ [0, 1], i = 1, · · · , N} . (23)

The well-known universal approximation theorem claims that
a multi-layer perceptron with a sufficient number of neurons
can accurately approximate any continuous mappings if proper
activation functions are applied at the neurons, e.g., sigmoid,
ReLu, and tanh functions [30]. Here, we use a sigmoid
activation function at the output layer.

We then quantize the continuous x̂t into Mt feasible candi-
date binary offloading actions, where Mt is a time-dependent
design parameter. The quantization function is expressed as:

ΥMt : x̂t �→ Ωt =
{
xt

j |xt
j ∈ {0, 1}N , j = 1, · · · ,Mt

}
, (24)

where Ωt denotes the set of candidate offloading actions in
the tth time frames. ΥMt represents a quantization function
that generates Mt = |Ωt| binary actions. A good quantization
function should balance the exploration-exploitation tradeoff

in generating the offloading action to ensure good training con-
vergence. Intuitively,

{
xt

j

}
’s should be close to x̂t (measured

by Euclidean distance) to make effective use of the DNN’s
output and meanwhile sufficiently separate to avoid premature
convergence to sub-optimal solution in the training process.

Here, we apply the noisy order-preserving (NOP) quantiza-
tion method [31], which can generate any Mt ≤ 2N candidate
actions. The NOP method generates the first Mt/2 actions (Mt

is assumed an even number) by applying the order-preserving
quantizer (OPQ) in [18] to x̂t. Specifically, the 1st action
xt

1 = [xt
1,1, · · · , xt

1,N ] is calculated as

xt
1,i =

{
1 x̂t

i > 0.5,
0 x̂t

i ≤ 0.5,
(25)

for i = 1, · · · , N . To generate the next Mt/2 − 1 actions,
we order the entries of x̂t based on the distance to 0.5, such
that |x̂t

(1) − 0.5| ≤ |x̂t
(2) − 0.5| ≤ · · · ≤ |x̂t

(i) − 0.5| · · · ≤
|x̂t

(N) − 0.5|, where x̂t
(i) denotes the ith ordered entry of x̂t.

Then, x̂t
(i)’s are used as the decision thresholds to quantize x̂t,

where the mth action xt
m, for m = 2, · · · ,Mt/2, is obtained

from entry-wise comparisons of x̂t and x̂t
(m−1). That is,

xt
m,i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, x̂t
i > x̂t

(m−1)

or
{
x̂t

i = x̂t
(m−1) and x̂t

(m−1) ≤ 0.5
}
,

0, x̂t
i < x̂t

(m−1)

or
{
x̂t

i = x̂t
(m−1) and x̂t

(m−1) > 0.5
}
,

(26)

for i = 1, · · · , N . To obtain the remaining Mt/2 actions,
we first generate a noisy version of x̂t denoted as x̃t =
Sigmoid (x̂t + n), where the random Gaussian noise n ∼
N (0, IN ) with IN being an identity matrix, and Sigmoid (·)
is the element-wise Sigmoid function that bounds each entry
of x̃t within (0, 1). Then, we produce the remaining Mt/2
actions xt

m, for m = Mt/2 + 1, · · · ,Mt, by applying the
OPQ to x̃t, i.e., replacing x̂t with x̃t in (25) and (26).

2) Critic Module: Followed by the actor module, the critic
module evaluates {xt

i} and selects the best offloading action
xt. Unlike the conventional actor-critic structure that uses a
model-free DNN as the critic network to evaluate the action,
LyDROO leverages the model information to evaluate the
binary offloading action by analytically solving the optimal
resource allocation problem. This enables the critic module to
have accurate evaluation of the offloading actions, and thus
achieving more robust and faster convergence of the DRL
training process.

Specifically, LyDROO selects the best action xt as

xt = arg max
xt

j∈Ωt

G
(
xt

j , ξ
t
)
, (27)

where G
(
xt

j , ξ
t
)

is obtained by optimizing the resource
allocation given xt

j in (P2). We will introduce the detailed
algorithm to obtain G

(
xt

j , ξ
t
)

in Section IV.B. Notice that
the calculation of G

(
xt

j , ξ
t
)

is performed by Mt times to
obtain the best action xt. Intuitively, a larger Mt results in
better solution performance, but a larger computation time.
To balance the performance-complexity tradeoff, we propose
here an adaptive procedure to set a time-varying Mt.
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Fig. 3. The schematics of the proposed LyDROO algorithm.

The key idea is that when the actor DNN gradually
approaches the optimal policy over time, a small Mt suffices
to find the optimal action within a small distance to x̂t.
Denote mt ∈ [0,Mt − 1] as the index of the best action
xt ∈ Ωt. We define m∗

t = mod(mt,Mt/2), which represents
the order of xt among either the Mt/2 noise-free or the
noise-added candidate actions. In practice, we set a maximum
M1 = 2N initially and update Mt every δM ≥ 1 time frames.
If mod (t, δM ) = 0 in time frame t, i.e., t can be divided by
δM , we set

Mt = 2 ·min
(
max

(
m∗

t−1, · · · ,m∗
t−δM

)
+ 1, N

)
. (28)

The additional 1 in the first term within the min operator
allows Mt to increase over time. Otherwise, Mt = Mt−1 if
mod (t, δM ) �= 0. Notice that too frequent update (small δM )
may degrade the training convergence while a too large δM
cause unnecessary computational complexity.

3) Policy Update Module: LyDROO uses
(
ξt,xt

)
as a

labeled input-output sample for updating the policy of the
DNN. In particular, we maintain a replay memory that only
stores the most recent q data samples. In practice, with an
initially empty memory, we start training the DNN after
collecting more than q/2 data samples. Then, the DNN is
trained periodically once every δT time slots to avoid model
over-fitting. When mod(t, δT ) = 0, we randomly select a
batch of data samples {(ξτ ,xτ ) , τ ∈ St}, where St denotes
the set of time indices of the selected samples. We then
update the parameter of the DNN by minimizing its average
cross-entropy loss function LS

(
θt
)

over the data samples
using the Adam algorithm [30]

LS(θt) = −1/|St| ·∑τ∈St

[
(xτ )ᵀ log Πθt (ξτ )

+ (1− xτ )ᵀ log
(
1−Πθt (ξτ )

)]
, (29)

where |St| denotes the size of the sample batch, (·)ᵀ denotes
the transpose operator, and the log function denotes the
element-wise logarithm operation of a vector. When the
training completes, we update the parameter of the actor
module in the next time frame to θt+1.

Algorithm 1 The Online LyDROO Algorithm for Solving
(P1)

input : Parameters V , {γi, ci}Ni=1, K , training interval
δT , Mt update interval δM ;

output: Control actions {xt,yt}Kt=1;
1 Initialize the DNN with random parameters θ1 and

empty replay memory, M1 ← 2N ;
2 Empty initial data queue Qi(1) = 0 and energy queue
Yi(1) = 0, for i = 1, · · · , N ;

3 for t = 1, 2, . . . ,K do
4 Observe the input ξt = {ht, Qi(t), Yi(t)}Ni=1 and

update Mt using (8) if mod (t, δM ) = 0;
5 Generate a relaxed offloading action x̂t = Πθt

(
ξt
)

with the DNN;
6 Quantize x̂t into Mt binary actions
{xt

i|i = 1, · · · ,Mt} using the NOP method;
7 Compute G

(
xt

i, ξ
t
)

by optimizing resource allocation
yt

i in (P2) for each xt
i;

8 Select the best solution xt = arg max
{xt

i}
G
(
xt

i, ξ
t
)

and

execute the joint action (xt,yt);
9 Update the replay memory by adding (ξt,xt);

10 if mod (t, δT ) = 0 then
11 Uniformly sample a batch of data set

{(ξτ ,xτ ) | τ ∈ St} from the memory;
12 Train the DNN with {(ξτ ,xτ ) | τ ∈ St} and

update θt using the Adam algorithm;
13 end
14 t← t+ 1;
15 Update {Qi(t), Yi(t)}Ni=1 based on

(
xt−1,yt−1

)
and

data arrival observation
{
At−1

i

}N

i=1
using (5) and (7).

16 end

4) Queueing Module: As a by-product of the critic module,
we obtain the optimal resource allocation yt associated with
xt. Accordingly, the system executes the joint computation
offloading and resource allocation action {xt,yt}, which
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processes data {Dt
i}Ni=1 and consumes energy {et

i}Ni=1 as given
in (3). Based on {Dt

i , e
t
i}Ni=1 and the data arrivals {At

i}Ni=1

observed in the tth time frame, the queueing module then
updates the data and energy queues {Qi(t+ 1), Yi(t+ 1)}Ni=1

using (5) and (7) at the beginning of the (t + 1)th
time frame. With the wireless channel gains observation
{ht+1

i }Ni=1, the system feeds the input parameter ξt+1 ={
ht+1

i , Qi(t+ 1), Yi(t+ 1)
}N

i=1
to the DNN and starts a new

iteration from the actor module in Step 1).
With the above actor-critic-update loop, the DNN con-

sistently learns from the best and most recent state-action
pairs, leading to a better policy πθt that gradually approx-
imates the optimal mapping to solve (P3). We summarize
the pseudo-code of LyDROO in Algorithm 1, where the
major computational complexity is in line 7 that computes
G
(
xt

i, ξ
t
)

by solving the optimal resource allocation prob-
lems. This in fact indicates that the proposed LyDROO
algorithm can be extended to solve (P1) when considering a
general non-decreasing concave utility U (rt

i) in the objective,
because the per-frame resource allocation problem to compute
G
(
xt

i, ξ
t
)

is a convex problem that can be efficiently solved,
where the detailed analysis is omitted. In the next subsection,
we propose a low-complexity algorithm to obtain G

(
xt

i, ξ
t
)
.

B. Low-Complexity Optimal Resource Allocation Algorithm

Given the value of xt in (P2), we denote the index set of
users with xt

i = 1 as Mt
1, and the complementary user set

as Mt
0. For simplicity of exposition, we drop the superscript

t and express the optimal resource allocation problem that
computes G

(
xt, ξt

)
as following

(P4) : maximize
τ ,f ,eO,rO

∑
j∈M0

{
ajfj/φ− Yj(t)κf3

j

}
+
∑

i∈M1
{airi,O − Yi(t)ei,O}

subject tofj/φ ≤ Qj(t), 0 ≤ fj ≤ fmax
j , ∀j ∈ M0,∑

i∈M1
τi ≤ 1,

ei,O ≤ Pmax
i τi, ri,O ≤ Qi(t), ∀i ∈M1,

ri,O ≤ Wτi
vu

log2

(
1 +

ei,Ohi

τiN0

)
, ∀i ∈M1,

τi, ri,O, ei,O ≥ 0, ∀i ∈M1,

where ai � Qi(t)+V ci is a parameter. Notice that (P4) can be
separately optimized for WDs in M1 and M0. In particular,
each j ∈ M0 solves an independent problem

maximize
fj

ajfj/φ− Yj(t)κf3
j

subject to 0 ≤ fj ≤ min
{
φQj(t), fmax

j

}
, (30)

where the closed-form optimal solution is

f∗
j = min

{√
aj

3φκYj(t)
,min

{
φQj(t), fmax

j

}}
, ∀j ∈M0.

(31)

Intuitively, the jth WD computes faster when Qj(t) is large
or Yj(t) is small, and vice versa.

On the other hand, denote τ̂ = {τi, ∀i ∈ M1}, êO =
{ei,O, ∀i ∈ M1} and r̂O = {ri,O, ∀i ∈M1}, we need to

solve the following problem for the WDs in M1,

maximize
τ̂ ,êO,r̂O

∑
i∈M1

{airi,O − Yi(t)ei,O}
subject to

∑
i∈M1

τi ≤ 1,
ei,O ≤ Pmax

i τi, ri,O ≤ Qi(t), ∀i ∈ M1,

ri,O ≤ Wτi
vu

log2

(
1 +

ei,Ohi

τiN0

)
, ∀i ∈M1.

τi, ri,O, ei,O ≥ 0, ∀i ∈M1.

We express a partial Lagrangian of the problem as

L ({τ̂ , êO, r̂O} , μ) =
∑

i∈M1

{airi,O − Yi(t)ei,O}+ μ
(
1−∑i∈M1

τi
)
, (33)

where μ denotes the dual variable. Furthermore, the dual
function is

d(μ) = maximize
τ̂ ,êO,r̂O

L ({τ̂ , êO, r̂O} , μ)

subject to ei,O ≤ Pmax
i τi, ri,O ≤ Qi(t), ∀i ∈ M1,

ri,O ≤ Wτi
vu

log2

(
1 +

ei,Ohi

τiN0

)
, ∀i ∈M1,

τi, ri,O, ei,O ≥ 0, ∀i ∈ M1

and the dual problem is minimize
μ≥0

d(μ). Notice that the dual

function can be decomposed into parallel sub-problems. For a
WD i ∈M1, it solves

maximize
τi,ei,O ,ri,O

{airi,O − Yi(t)ei,O} − μτi (34a)

subject to τi ≥ 0, 0 ≤ ei,O ≤ Pmax
i τi, (34b)

0 ≤ ri,O ≤ Qi(t), (34c)

ri,O ≤ Wτi
vu

log2

(
1 +

ei,Ohi

τiN0

)
. (34d)

In the following, we propose a simple algorithm that
solves (34) efficiently.

Notice that equality (34d) holds at the optimum because
otherwise we can reduce the value of ei,O at the opti-
mum to achieve a higher objective. By setting ri,O =
Wτi

vu
log2

(
1 + ei,Ohi

τiN0

)
in (34d), we can equivalently write the

constraint 0 ≤ ei,O ≤ Pmax
i τi in (34b) as

0 ≤ ri,O
τi
≤ W

vu
log2

(
1 +

Pmax
i hi

N0

)
� Rmax

i , (35)

where Rmax
i denotes the maximum transmission rate of the

ith WD. From (3), we express ei,O as a function of ri,O and
τi as

ei,O =
N0τi
hi

(
2

ri,Ovu

W τi − 1
)

� τi
hi
g

(
ri,O
τi

)
, (36)

where g(x) � N0

(
2

xvu
W − 1

)
is a convex function. By plug-

ging (35) and (36) into (34), we can equivalently trans-
form (34) as the following problem

maximize
ri,O,τi

airi,O − μτi − Yi(t)
τi
hi
g

(
ri,O
τi

)
subject to τi ≥ ri,O/Rmax

i , 0 ≤ ri,O ≤ Qi(t). (37)
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Notice that (37), and thus (34), is equivalent to the following
problem

maximize
ri,O

{Vi(ri,O)|0 ≤ ri,O ≤ Qi(t)} , (38)

where

Vi(ri,O) � maximize
τi

airi,O − μτi − Yi(t)
τi
hi
g

(
ri,O
τi

)
subject to τi ≥ ri,O/Rmax

i . (39)

(39) is a convex problem, where we derive the optimal solution
in the following Proposition 1.

Proposition 1: The optimal solution of (39) is

τ∗i =

⎧⎨
⎩

ri,O

Rmax
i

, if hi ≤ ψi(μ),
ln 2vu·ri,O

W ·
�
W
�

e−1
�

μhi
Yi(t)N0

−1
��

+1
� , otherwise, (40)

where ψi(μ) � N0
P max

i

(
Ai

−W(−Ai exp(−Ai))
− 1
)

and Ai � 1 +
μ

Yi(t)Pmax
are fixed parameters given μ. W(x) denotes the

Lambert-W function, which is the inverse function of J(z) =
z exp(z) = x, i.e., z =W(x).

Proof : Please see the detailed proof in the Appendix A. �
Remark 2: A close observation of (40) shows that we can

compactly express the optimal solution τ∗i of problem (39)
as ri,O = li(μ)τ∗i , where li(μ) is a fixed parameter given
μ, representing the optimal communication data rate of the
ith WD. In other words, the optimal transmission time τ∗i
of (39) increases linearly with ri,O under a fixed transmission
rate li(μ). In the following, we show how to obtain the dual
optimal solution μ∗ and retrieve the primal optimal solutions
to (32) accordingly.

From Proposition 1, we plug ri,O = li(μ)τi into (39) and
rewrite problem (38) as

maximize
ri,O

{
ai − μ

li(μ)
− Yi(t)

g [li(μ)]
li(μ)hi

}
ri,O

subject to 0 ≤ ri,O ≤ Qi(t), (41)

where the optimal solution is

r∗i,O =

{
0, if ai − μ

li(μ) − Yi(t)
g[li(μ)]
li(μ)hi

< 0,

Qi(t), otherwise.
(42)

Accordingly, we have τ∗i = r∗i,O/li(μ). After obtaining τ∗i ,
∀i ∈ M1, we calculate the subgradient of μ in (33) as
1−∑i∈M1

τ∗i . Then, we obtain the optimal dual variable μ∗

through the ellipsoid method (bi-section search in this case)
over the range [0,Δ], where Δ is a sufficiently large value,
until a prescribed precision requirement is met.

Given the optimal μ∗, we denote the optimal ratio obtained
from (40) as li (μ∗) � r∗i,O/τ

∗
i , ∀i ∈ M1. Notice that the

optimal solution
{
τ∗i , r

∗
i,O, ∀i ∈ M1

}
of the dual problem

may not be primal feasible. Therefore, to find a primal optimal
solution to (32), we substitute τi = ri,O/li (μ∗) into (32) and
simplify the problem as

maximize
r̂O

∑
i∈M1

{
ai − Yi(t)g [li(μ∗)]

hili(μ∗)

}
ri,O

subject to
∑

i∈M1

ri,O
li(μ∗)

≤ 1, ri,O ≤ Qi(t), ∀i ∈ M1. (43)

Algorithm 2 Primal Dual Algorithm for Optimal Resource
Allocation of (P4)

input : xt, ξt = {Yi(t), Qi(t), At
i}Ni=1

1 initialization: σ0 ← 0.1, LB ← 0, UB ← sufficiently
large value, convert xt into {M0,M1} in (P4);

2 for each WD j ∈M0 do
3 Calculate f∗

j using (31);
4 end
5 repeat
6 μ← UB+LB

2 ;
7 for each WD i ∈M1 do
8 Calculate li(μ) using (40) and r∗i,O using (42);
9 τ∗i ← r∗i,O/li(μ);

10 end
11 if 1−∑i∈M1

τ∗i < 0 then
12 LB ← μ;
13 else
14 UB ← μ;
15 end
16 until |UB − LB| ≤ σ0;
17 μ∗ ← μ and obtain r̂∗O by solving the LP in (43), then

obtain τ̂ ∗ and ê∗O using (44);
18 Return an optimal solution of (P4) by combining (31)

and (44).

The above problem is a simple linear programming (LP) that
can be easily solved. With a bit abuse of notation, we denote
the optimal solution of (43) as r̂∗O =

{
r∗i,O, ∀i ∈M1

}
and

retrieve the optimal solution to (32) as

τ∗i = r∗i,O/li (μ∗) , e∗i,O =
τ∗i g [li(μ∗)]
hili(μ∗)

, ∀i ∈ M1. (44)

Denote τ̂ ∗ = {τ∗i , ∀i ∈M1} and ê∗O =
{
e∗i,O, ∀i ∈ M1

}
.

As {τ̂ ∗, ê∗O, r̂
∗
O, μ

∗} satisfies the KKT conditions,
{τ̂ ∗, ê∗O, r̂

∗
O} is an optimal solution to (32). By combining

the optimal solutions in (31) and (44), we obtain an optimal
solution of (P4). We summarize the pseudo-code of the
algorithm to solve (P4) in Algorithm 2.

V. PERFORMANCE ANALYSIS

A. Computational Complexity

We first analyze the complexity of the proposed LyDROO
scheme. The execution of LyDROO algorithm consists of two
parts: offloading action generation (line 4-9 of Algorithm 1)
and policy update (line 10-13 of Algorithm 1). In between,
offloading action generation needs to be performed in every
time frame, while policy update is performed infrequently
(e.g., once every tens of time frames) and in parallel with
task offloading and local computation. Therefore, we focus on
analyzing the complexity of generating an offloading action
in each time frame. A close observation shows that the major
complexity is on optimizing the resource allocation in line 7
of Algorithm 1, which executes Algorithm 2 to solve (P4) Mt

times in each time frame.
We show that the time complexity of Algorithm 2 is

O
(
N log2

(
Δ
σ0

)
+N3L̄

)
: the first term corresponds to the
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bi-section search of μ with σ0 being the small positive
precision parameter; the second term corresponds to solving
the LP in (43) using interior point method [32] with L̄
being the length of input in binary representation to prob-
lem (43). Compared to directly solving a general convex
optimization (P4) with 4N variables using the interior point
method, the proposed Algorithm 2 solves an LP in (43)
with only N variables, which incurs much lower computa-
tional complexity especially when N is large. Since LyDROO
executes Algorithm 2 for Mt times in each time frame,
the overall complexity of generating an offloading action
is O

([
N log2

(
Δ
σ0

)
+N3L̄

]
Mt

)
. Thanks to the adaptive

procedure in (8) that gradually reduces the value of Mt during
the learning process, we observe in simulations that a small
Mt (e.g., less than 5 when N = 30) suffices to generate
optimal offloading action when the learning process converges.
In the Section VI, we show in simulations that the proposed
LyDROO enjoys very low computation time and is suitable
for online implementation in time-varying edge environment.

B. Convergence Performance

We then analyze the asymptotic convergence performance
of the LyDROO algorithm in solving (P1). To begin with,
we first introduce some preliminaries of Lyapunov optimiza-
tion. We denote the random event of the considered problem
as an i.i.d. process ω(t), which consists of the fading channels
and data arrivals, i.e., ω(t) = {ht

i, A
t
i}Ni=1. We introduce

a class of stationary and randomized policies called ω-only
policy, which observes ω(t) for each time frame t and makes
control decisions independent of the queue backlog Z(t).
To ensure that the data queue stability constraint can be
satisfied, we assume (P1) is feasible and the following Slater
condition holds.

Assumption 1 (Slater Condition): There are values ε > 0
and Φ (ε) ≤ Ropt and a ω-only policy Π that makes control
decisions αΠ,t in the tth time frame, which satisfy

E
[
Rt
(
αΠ,t

)]
= Φ (ε) ,

E
[
et

i

(
αΠ,t

)] ≤ γi − ε, ∀i.
E
[
At

i

] ≤ E
[
Dt

i

(
αΠ,t

)]− ε, ∀i. (45)

Here, Rt �
∑N

i=1 cir
t
i denotes the weighted sum computation

rate archived in the tth time frame. Ropt is the optimal
objective of (P1) obtained over all feasible control policies
(including but not limited to ω-only policy).

We show the performance of LyDROO algorithm in the
following Theorem 1.

Theorem 1: Suppose that (P1) is feasible and satisfies the
Slater condition for some ε, Φ (ε) and ω-only policy Π.
Suppose that given any Z(t) in time frame t, the LyDROO
algorithm produces a value of (19) that is no larger than
a constant C ≥ 0 above the minimum, i.e., the per-frame
subproblem (P2) is solved within an optimality gap C. Then,
the following conditions hold when applying the LyDROO
algorithm in each time frame t

a) The time average computation rate satisfies

lim
K→∞

1/K ·∑K
t=1E

[
Rt
] ≥ Ropt − (B̂ + C)/V. (46)

TABLE I

SIMULATION PARAMETERS

b) The average system queue length satisfies

lim
K→∞

1/K ·∑K
t=1

∑N
i=1E

[
Qt

i

]
≤ 1/ε ·

(
B̂ + C + V

[
Ropt − Φ (ε)

])
. (47)

c) All the data queues Qi(t) are strongly stable and the
time average power constraint (6c) is satisfied with
probability 1.

Proof : Please see the detailed proof in the Appendix B. �
Theorem 1 indicates that if the LyDROO algorithm achieves

a limited optimality gap C when solving the per-frame sub-
problem (P2), then we satisfy all the long-term constraints and
achieve an [O(1/V ), O(V )] computation rate-delay tradeoff.
That is, by increasing V , we can improve the objective of
(P1) proportional to 1/V , but at the cost of longer data queue
length (processing delay) proportional to V , and vice versa.
Besides, a smaller C leads to both higher rate and lower delay
performance. In simulation section, we demonstrate the impact
of V on the long-term performance and show that LyDROO
achieves very small C for the per-frame subproblem. Notice
that the above analysis does not assume the specific utility
function in the objective of (P1), and thus the results hold for
any non-decreasing concave utility function U(rt

i).

VI. SIMULATION RESULTS

In this section, we use simulations to evaluate the perfor-
mance of the proposed LyDROO algorithm. All the com-
putations are evaluated on a TensorFlow 2.0 platform with
an Intel Core i5-4570 3.2GHz CPU and 12 GB of memory.
We assume that the average channel gain h̄i follows a path-loss

model h̄i = Ad

(
3×108

4πfcdi

)de

, i = 1, · · · , N , where Ad = 3
denotes the antenna gain, fc = 915 MHz denotes the carrier
frequency, de = 3 denotes the path loss exponent, and di

in meters denotes the distance between the ith WD and the
ES. hi follows an i.i.d. Rician distribution with line-of-sight
link gain equal to 0.3h̄i. The noise power N0 = Wυ0 with
noise power spectral density υ0 = −174 dBm/Hz. Unless
otherwise stated, we consider N = 10 WDs equally spaced
with di = 120 + 15(i − 1), for i = 1, · · · , N . The weight
ci = 1.5 if i is an odd number and ci = 1 otherwise. The task
data arrivals of all the WDs follow exponential distribution
with equal average rate E [At

i] = λi, i = 1, · · · , N . The values
of the other parameters are listed in Table I, which are equal
for all the WDs.

The proposed LyDROO adopts a fully-connected multilayer
perceptron in the actor module, consisting of one input layer,
two hidden layers, and one output layer, where the first
and second hidden layers have 120 and 80 hidden neurons,
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respectively. For performance comparison, we consider two
benchmark methods:

• Lyapunov-guided Coordinate Decent (LyCD): It min-
imizes the upper bound of drift-plus-penalty in (19),
or equivalently solves (P2), using the coordinate
decent (CD) method [8] that iteratively applies
one-dimensional search to update the binary offloading
decision vector xt. Although the optimal solution of (P2)
is hard to obtain, we have verified through extensive
simulations that the CD method achieves close-to-optimal
performance. Therefore, we consider LyCD as a target
performance benchmark of the LyDROO algorithm. The
major drawback of LyCD, however, lies in the significant
computation delay when N is large. We show in the fol-
lowing simulations that the proposed LyDROO achieves
the similar computation performance as LyCD but takes
much shorter computation time.

• Myopic optimization [18]: The Myopic method neglects
the data queue backlogs and maximizes the weighted sum
computation rate in each time frame t by solving

maximize
xt,τ t,ft,et

O,rt
O

∑N
i=1cir

t
i (48a)

subject to (21a)− (21e), (48b)

et
i ≤ tγi −

∑t−1
l=1e

l
i, ∀i. (48c)

Here, constraint (48c) guarantees that the ith average
power constraint of (P1) is satisfied up to the tth time
frame, where

{
el

i|l < t
}

is the past energy consumptions
known at the tth time frame.

Besides the two benchmarks above, we have also consid-
ered using Deep Deterministic Policy Gradient (DDPG) [33],
a state-of-the-art policy-based DRL scheme, to directly learn
the optimal mapping from the input ξt to the output mixed
integer-continuous offloading action {xt

i, τ
t
i , f

t
i , e

t
i,O}Ni=1 in

(P2). However, we find through extensive simulations that
DDPG is unable to stabilize the task data queues for all the
WDs, even when the number of WDs and task arrival rates
are small, e.g., N = 3 and λi = 3 Mbps. Therefore, we do not
include DDPG as a performance benchmark in the following
simulations.

In Fig. 4, we first evaluate the performance of the LyDROO
algorithm in solving per-frame subproblem (P2). For fair
comparison, we first apply the LyCD method for 30, 000 time
frames, where we record the input to the actor module {ξ(t)}
throughout the time. Then, we use the same {ξ(t)} as the input
to the LyDROO framework in Fig. 3 only for computing the
output action {xt,yt} in each time frame without updating the
queue states. We plot the ratio between the objective values of
(P2) achieved by the LyDROO and LyCD as the time proceeds,
where each point is a moving-window average of 500 time
frames. We notice that the ratio gradually increases with time
and eventually reaches about 0.96. We also show the boxplot
of the last 500 time frames, which shows that the medium ratio
is around 0.98 and the ratio is above 0.94 for more than 75%
of the cases. As LyCD achieves close-to-optimal performance
of the per-frame subproblem (P2), this shows that LyDROO
solves (P2) with small optimality gap C, thus leading to both

Fig. 4. Performance of the LyDROO algorithm in solving per-frame
subproblem (P2). In the boxplot, the central mark (in red) indicates the
median, and the bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively.

higher computation rate and lower execution delay according
to Theorem 1.

We then evaluate the convergence of proposed LyDROO
algorithm and the two benchmark methods. In Fig. 5, we con-
sider two data arrival rates with λi = 2.5 and 3 Mbps for all
i, and plot the weighted sum computation rate, average data
queue length, and average power consumption performance
over time. We consider i.i.d. realizations of random events
ω(t) in 10, 000 time frames, where each point in the figure is
a moving-window average of 200 time frames. In Fig. 5(a),
we observe that for a low data arrival rate λi = 2.5, all the
schemes maintain the data queues stable and achieve similar
computation rate performance. Besides, they all satisfy the
average power constraint 0.08 W in Fig. 5(b). In particular,
the LyDROO and LyCD methods achieve higher data queue
lengths than the Myopic scheme, as they consume strictly
lower power than the average power requirement, meanwhile
achieving the identical rate performance in Fig. 5(c). When
we increase λi from 2.5 to 3, all the three schemes still
satisfy the average power constraints. However, the average
data queue length of the Myopic method increases almost
linearly with time, indicating that it is unable to stabilize
the data queues. This is because the data arrival rate has
surpassed the computation capacity (i.e., achievable sum com-
putation rate) of the Myopic algorithm. On the other hand,
both the LyCD and LyDROO methods can stabilize the data
queues, indicating that the proposed Lyapunov-based method
can achieve a higher computation capacity than the Myopic
method. In between, the LyCD method maintains lower data
queue length over all time frames. The LyDROO method
takes time to learn the optimal offloading policy in the early
stage, where the data queue length increases quickly when
t ≤ 3, 000. However, as the embedded DNN gradually
approaches the optimal policy, the data queue length quickly
drops and eventually converges to the similar queue length
and rate performance as the LyCD method after around t =
7, 500. For both λi’s, the data queue lengths of the LyDROO
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Fig. 5. Convergence performance comparisons of different schemes under
λi = 2.5 and 3. From top to bottom figures: a) data queue length; b) power
consumption; c) weighted sum computation rate.

algorithm start to drop at around t = 3, 000, indicating its fast
convergence even under highly dynamic queueing systems.
We also notice that the proposed LyDROO achieves excellent
computation performance even before the learning algorithm

Fig. 6. Performance comparisons under different λi and γi.

fully converges. In Fig. 5(c) with λi = 3 Mbps, the perfor-
mance gap of computation rate is less than 5% when t ≤ 3000
compared to the target benchmark LyCD, and LyDROO even
achieves higher rate than LyCD between t = 3000 to 7000
when the learning process gradually converges.

In Fig. 6, we evaluate the impact of system parameters.
In Fig. 6(a), we fix γi = 0.08 watt and vary data arrival rate
λi from 2.5 to 3.2 Mbps. In Fig. 6(b), we fix λi = 3 and vary
power constraint γi from 0.06 to 0.1. We omit the results
for λi ≥ 3.3 and γi ≤ 0.05 in the two figures, respectively,
because we observe that none of the three schemes can
maintain queue stability under the heavy data arrivals and
stringent power constraints, i.e., arrival rate surpasses the
achievable sum computation rate. All the three schemes satisfy
the average power constraints under different parameters in
both figures. In Fig. 6(a), the data queue lengths of all the
three schemes increase with λi. In particular, the data queues
are stable with LyCD and LyDROO under all the considered
λi, while the queue lengths of the Myopic scheme become
infinite when λi ≥ 2.8. In Fig. 6(b), the data queues are stable
with LyCD and LyDROO under all the considered λi, and the
queue length decreases with γi under the less stringent power
constraint. In vivid contrast, the Myopic scheme has infinite
queue length under all λi (thus, no point appears in the queue
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Fig. 7. Impact of the Lyapunov control parameter V .

length figure). The results show that both LyDROO and LyCD
achieve much larger stable capacity region than the Myopic
method, and thus are more robust under heavy workload and
stringent power constraints. We also observe that LyCD and
LyDROO achieve identical computation rate performance in
all the considered cases. This is because when the data queues
are long-term stable, the average computation rate of the ith
WD (departures rate of the data queue) equals the data arrival
rate λi, and thus the achievable average weighted sum com-
putation rate is

∑N
i=1 ciλi for both schemes. In fact, this also

indicates that both LyDROO and LyCD achieve the optimal
computation rate performance in all the considered setups.
In contrast, the Myopic method achieves lower computation
rate when the data queues are unstable, i.e., for λi > 2.7
in Fig. 6(a) and all the considered γi ∈ [0.06, 0.1] in Fig. 6(b).
Moreover, the performance gap increases under heavier
workload (larger λi) and more stringent power constraints
(smaller γi).

In Fig. 7, we further show the impact of the Lya-
punov control parameter V on the performance of the two
Lyapunov-based LyDROO and LyCD methods, where V ∈
[1, 1000]. All the points in the figure are the average perfor-
mance after convergence. In all the figures, the two methods
achieve very similar performance, where they both maintain
data and energy queues stable, control the average power con-
sumption strictly below the threshold, and achieve the optimal
computation rate performance. The parameter V controls the
balance between the sum computation rate performance and
total data queue length. Interestingly, when V is small (e.g.,
V ≤ 40), the data queue length and power consumption

decrease with the increase of V , and the virtual energy queue
length is close to zero. This is because the offloading probabil-
ities increase for most of WDs as V becomes larger. However,
when V > 40, the data queue length, power consumption, and
energy queue length all increase with V monotonically. This
is because the offloading strategy becomes unfair when V is
large, such that the increase of offloading probabilities of some
WDs is at the cost of decreased offloading probabilities of
many others. This results in an overall increase of average data
queue length and energy consumption. In practice, we should
set a moderate V to reduce the task data buffer size required at
the WDs, which depends on the specific network deployment
and the task arrival rates of all the WDs.

In Fig. 8, we show the performance of LyDROO under
different number of WDs. Specifically, we plot in Fig. 8(a) the
average queue length when the individual task arrival rate λi

varies. We observe that LyDROO can maintain stable task data
queue for λi ≤ 3.2 Mbps when N = 10, λi ≤ 2.4 Mbps when
N = 20, and λi ≤ 2 Mbps when N = 30. The points where
task data queue becomes unstable are not plotted, e.g., λi ≥
2.5 Mbps for N = 20. As expected, the stable capacity region
shrinks with N because of the heavier computation workload
in the system under the same λi. For a specific individual task
arrival rate λi, the average data queue length increases with N .
For instance, for λi = 2 Mbps, the queue length is less than 5
when N = 10, around 20 when N = 20, and around 50 when
N = 30. In Fig. 8(b), we observe that the energy consump-
tion increases with λi for all N , and gradually reaches the
power consumption threshold 0.08 Watt when λi approaches
the upper boundary of stable capacity region. The higher
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Fig. 8. Performance of LyDROO under different number of WDs N ∈
{10, 20, 30}.

TABLE II

COMPUTATION RATE AND CPU COMPUTATION TIME WHEN N VARIES

power consumption arises from the more stringent resource
constraint when the overall network computation workload
increases.

From the above discussions, both LyDROO and LyCD
achieve excellent computation performance under different
parameters. In Table II, we compare their computation time
under different number of WDs N . Here, we consider a
fixed total network workload 30 Mbps and equally allocate
λi = 30/N to each WD for N ∈ {10, 20, 30}. The locations
of the N WDs are evenly spaced within [120, 255] meters
distance to the ES. We observe that the two methods achieve
similar computation rate performance for all N and all the
long-term constraints are satisfied. Besides, thanks to setting
a time-varyingMt in (8), LyDROO achieves significant saving
in execution time compared to that when a fixed Mt = 2N is
used, e.g., saves more than 80% execution time for N = 30,
without degrading the convergence. Due to the page limit,
we omit the illustrations of detailed performance and focus on
comparing the computation time between LyCD and LyDROO
methods. In Table II, LyDROO takes at most 0.156 second
to generate an offloading action in all the cases. In contrast,
LyCD consumes acceptable latency when N = 10, but
significantly long latency when N = 30, e.g., around 50
times longer than that of LyDROO method. Because the
channel coherence time of a common indoor IoT system is no
larger than several seconds, the long computation time makes
LyCD costly even infeasible in a practical MEC system with
online offloading decision. The proposed LyDROO algorithm,
in contract, incurs very short latency overhead, e.g., around
3% overhead when the time frame is 5 seconds for N = 30.
Recall that after the DNN generating a control action in a time

frame, the training process of the DNN is performed in parallel
with task offloading and computation in the remainder of the
time frame, and thus does not incur additional delay overhead.
Therefore, the LyDROO algorithm can be efficiently applied
in an MEC system under fast channel variation.

VII. CONCLUSION AND DISCUSSIONS

In this paper, we have studied an online stable computation
offloading problem in a multi-user MEC network under sto-
chastic wireless channel and task data arrivals. We formulate
a multi-stage stochastic MINLP problem that maximizes the
average weighted sum computation rate of all the WDs under
long-term queue stability and average power constraints. The
online design requires making joint action of binary compu-
tation offloading and resource allocation in each short time
frame without the assumption of knowing the future realiza-
tions of random channel conditions and data arrivals. To tackle
the problem, we proposed a LyDROO framework that com-
bines the advantages of Lyapunov optimization and DRL.
We show in both theory and simulations that the proposed
approach can achieve optimal computation rate performance
meanwhile satisfying all the long-term constraints. Besides,
it incurs very low computational complexity in generating an
online action, and converges within relatively small number
of iterations. The proposed LyDROO framework has wide
application in MEC networks in enhancing both the efficiency
and robustness of computation performance.

We conclude the paper with some potential extensions of
the proposed LyDROO scheme and future working directions.
First, besides binary computation offloading considered in this
paper, the proposed LyDROO scheme can also be extended
to design online partial computation offloading strategy where
the computation tasks consist of multiple independent subtasks
(such as in [19]). By carefully setting binary variables to
represent which subset of subtasks to be offloaded for edge
execution, LyDROO is applicable to jointly optimize the
binary offloading decisions and continuous resource allocation
for the partial offloading scheme.

Second, we consider in this paper that the task data
arrivals follow an i.i.d. process, which is a crucial assump-
tion for the proof of the convergence performance of the
LyDROO scheme in Algorithm 1. However, according to
Theorem 4.9 in [21], the proposed LyDROO can achieve
the similar [O(1/V ), O(V )] performance guarantees as those
described in Theorem 1 of this paper when the task data
arrivals follow a more general ergodic (possibly non-i.i.d.)
process, such as a Markov modulated process that the dis-
tribution of arrival rates is time-varying and correlated in
time. In Fig. 9, we evaluate the performance of LyDROO
under non-i.i.d. task arrivals for N = 10 WDs, where the
task arrivals follow an ON-OFF Markov modulated random
process. Specifically, we consider two states for the arrival
process, i.e., the ON state and the OFF state, which are
modulated by a two-state Markov chain with transition matrix
[0.1, 0.9; 0.9, 0.1]. The arrived task data size At

i at the ith WD
in the tth time frame is 0 if the system is in OFF state, and
follows an i.i.d. exponential distribution in ON state. In prac-
tice, the ON-OFF Markov modulated random process models
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Fig. 9. The convergence performance of LyDROO under both i.i.d.
exponential and the non-i.i.d. Markov modulated ON-OFF task arrival models.

the bursty arrivals of task data. We compare the convergence
performance of LyDROO under both i.i.d. exponential and the
non-i.i.d. ON-OFF task arrival models. For fair comparison,
we set equal long-term average task arrivals rate 3 Mbps for
both data arrival models. We plot in Fig. 9(a) the average task
arrival of the 10 WDs over different time frames of both i.i.d.
and the non-i.i.d. ON-OFF task arrival models. We observe
in Fig. 9(b) that LyDROO can achieve stable task data queue,
and in fact very low task queue length, for both i.i.d. and non-
i.i.d. task data arrivals after sufficient training, although the
time until convergence is longer under the non-i.i.d. arrivals.
In Fig. 9(c), the average energy consumption constraint 0.08
watt is also satisfied under both task arrival models. The results
demonstrate the effectiveness of the proposed LyDROO under
non-i.i.d. task data arrivals.

Third, we assume a block fading channel model in this
paper. In practice, however, wireless channel may experience
small variations within a time frame. Recall that ht

i denotes the
channel gain at the beginning of the tth time frame. In case
of small channel variation, we can include a signal-to-noise
(SNR) power margin ρ ≥ 1 when setting the computation

offloading rate, i.e., Dt
i,O = Wτ t

i T
vu

log2

(
1 +

Et
i,Oht

i

τ t
i TρN0

)
in (2),

such that the channel gain is likely above ht
i/ρ throughout the

time frame. Evidently, setting a larger ρ increases the robust-
ness of communication against channel variation, however,
at the cost of lower spectrum efficiency.

Fourth, we neglect in this paper the delay on downloading
the computation result from the edge server. When the down-
loading time is non-negligible for some application, we denote
the delay on downloading the result of the ith offloading WD
in the tth time frame as

wt
i =

Livu

W log2

(
1 + P0 gt

i

N0

) , ∀i ∈ Mt
1, (49)

where gt
i denotes the downlink channel gain, P0 denotes the

fixed transmit power of the edge base station, and Li denotes
the fixed size of computation result. During the execution
of the LyDROO algorithm, Mt

1 is the output of the actor
module, such that wt

i ’s are fixed parameters when the critic

module solves the optimal resource allocation problem (P4)
givenMt

1. Therefore, we can include result downloading delay
into consideration by simply replacing the time allocation
constraint in (P4)

∑
i∈M1

τi ≤ 1 with the similar linear
constraint

∑
i∈Mt

1
(τ t

i + wt
i) ≤ 1, without affecting the overall

algorithm design of LyDROO.
Last but not the least, in this paper, we coordinate the

computation offloading of multiple WDs using TDMA. In fact,
the proposed LyDROO is also applicable to MEC systems
using other multiple access methods, such as FDMA, CDMA,
OFDMA, and NOMA (non-orthogonal multiple access),
as long as the critic module can quickly obtain the optimal
wireless resource allocation. Accordingly, the technical chal-
lenge lies in the design of efficient resource allocation algo-
rithms under different multiple access schemes considered.

APPENDIX I
PROOF OF PROPOSITION 1

Proof : Given ri,O , we denote the objective of the prob-
lem (39) as Ω(τi), which is a strictly concave function within
the feasible set τi ≥ ri,O

Rmax
i

. Accordingly, the minimum is
achieved at either the boundary point ri,O

Rmax
i

or the point v1
that satisfies Ω′(v1) = 0, depending on the value of v1.
To obtain v1, we take the derivative of Ω(τi) and set it equal to
zero, i.e.,

Ω′(τi) = −μ− Yi(t)N0

hi(
2

ri,Ovu

Wτi − 1− ln 2 · 2
ri,Ovu

Wτi · ri,Ovu

Wτi

)

= −Yi(t)N0e

hi

[
e−1

(
μhi

Yi(t)N0
− 1
)

−eln 2
ri,Ovu

Wτi
−1

(
ln 2 · ri,Ovu

Wτi
− 1
)]

= 0,

⇒ e
ln 2

ri,Ovu

Wτi
−1

(
ln 2 · ri,Ovu

Wτi
− 1
)

= e−1

(
μhi

Yi(t)N0
− 1
)
. (50)

Because e−1
(

μhi

Yi(t)N0
− 1
)
≥ −1, the above equality is

equivalent to

ln 2 · ri,Ovu

Wτi
− 1 =W

(
e−1

[
μhi

Yi(t)N0
− 1
])

, (51)

where W(x) denotes the Lambert-W function. Therefore,
we have

v1 =
ln 2 vu · ri,O

W ·
[
W
(
e−1

[
μhi

Yi(t)N0
− 1
])

+ 1
] . (52)

If v1 <
ri,O

Rmax
i

, or equivalently Ω′(τi) = 0 is not achievable
within the feasible set, we can infer that the optimal solution
is obtained at the boundary (τi)

∗ = ri,O

Rmax
i

. Because Ω(τi) is
concave, Ω′(τi) is a decreasing function. Given Ω′(v1) = 0,

the condition v1 <
ri,O

Rmax
i

is equivalent to Ω′
(

ri,O

Rmax
i

)
< 0.
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By substituting τi = ri,O

Rmax
i

into (50), we have v1 <
ri,O

Rmax
i

when

μ+ Yi(t)Pmax
i

[
1− ln (1 + di)

(
1
di

+ 1
)]

> 0

⇒ ln (1 + di) ≤
(

1 +
μ

Yi(t)Pmax
i

)(
1− 1

1 + di

)

⇒ ln
(

1
1 + di

)
≥ −Ai +

Ai

1 + di
, (53)

where di � hiP
max
i

N0
and Ai � 1 + μ

Yi(t)P max
i

. By taking a
natural exponential operation at both sides of (53), we have

exp
(
− Ai

1 + di

)(
1

1 + di

)
≥ exp (−Ai)

⇒ exp
(
− Ai

1 + di

)(
− Ai

1 + di

)
≤ −Ai exp (−Ai) .

Because the RHS of the above inequality satisfies
−e−1 ≤ −Ai exp (−Ai) ≤ 0, the inequality can be
equivalently expressed as

−Ai/(1 + di) ≤ W (−Ai exp (−Ai)) , (54)

where W (−Ai exp (−Ai)) ∈ [−1, 0]. The equivalence
holds because W(x) is an increasing function when
x ≥ −1/e. After some simple manipulation, we obtain
from (54) that the optimal solution (τi)

∗ = ri,O

Rmax
i

when

hi ≤ N0
P max

i

(
Ai

−W(−Ai exp(−Ai))
− 1
)

. Otherwise, we conclude

that v1 ≥ ri,O

Rmax
i

and Ω′(τi) = 0 is achievable such that the
optimal solution is τ∗i = v1. �

APPENDIX II
PROOF OF THEOREM 1

To prove Theorem 1, we first introduce the following two
lemmas.

Lemma 1: Suppose that (P1) is feasible and ω(t) is station-
ary, then for any δ > 0, there exits an ω-only policy Γ, such
that the following inequalities are satisfied:

E
[
Rt
(
αΓ,t

)] ≥ Ropt − δ,
E
[
et

i

(
αΓ,t

)− γi

] ≤ δ, ∀i,
E
[
At

i

] ≤ E
[
Dt

i

(
αΓ,t

)]
+ δ, ∀i. (55)

Proof : See Theorem 4.5 of [21] for detailed proof. �
Lemma 2: If Yi(t) is rate stable, i.e., limK→∞

Yi(K)
K = 0

holds with probability 1, then the ith average power constraint
in (6c) is satisfied with probability 1.

Proof: Using the sample path property (Lemma 2.1 of [21]),
we have

Yi(K)
K

− Yi(1)
K
≥ 1
K

∑K
t=1e

t
i −

1
K

∑K
t=1γi

⇒ 1
K

∑K
t=1e

t
i ≤ γi +

Yi(K)
K

. (56)

By taking the limit K → ∞ on both size and substituting
limK→∞

Yi(K)
K = 0, we have limK→∞ 1

K

∑K
t=1 e

t
i ≤ γi holds

with probability 1, which completes the proof. �
Proof of Theorem 1: Because (P1) is feasible and ω(t) is an

i.i.d. process, we apply Lemma 1 and consider a fixed δ > 0

and the corresponding ω-only control policy Γ. Because the
minimum of (19) is obtained over all feasible control policies,
including Γ, we have

ΔL (Z(t))−V · E [Rt|Z(t)
]

≤ B̂ + C +
∑N

i=1

(
Qi(t)E

[(
At

i −Dt
i

(
αΓ,t

)) |Z(t)
]

+Yi(t)E
[
et

i

(
αΓ,t

)− γi|Z(t)
]−V · E [Rt

(
αΓ,t

) |Z(t)
] )

†
≤ B̂ + C +

∑N
i=1Qi(t)E

[(
At

i −Dt
i

(
αΓ,t

))]
+
∑N

i=1Yi(t)E
[
et

i

(
αΓ,t

)− γi

]−V ·∑N
i=1E

[
Rt
(
αΓ,t

)]
‡
≤ B̂ + C + δ

[∑N
i=1 (Qi(t) + Yi(t))

]
− V (Ropt − δ) , (57)

where inequality (†) is because the control policy Γ is indepen-
dent to queue backlog Z(t), and the inequality (‡) is obtained
by plugging (55). By letting δ → 0, we have

ΔL (Z(t))−V · E [Rt|Z(t)
] ≤ B̂ + C−V Ropt. (58)

Furthermore, by summing both sizes of (58) from t = 1 to K ,
and taking iterated expectations and telescoping sums, then
dividing both sizes by KV , we obtain

1
KV

(
E [L (Z(K + 1))]− E [L (Z(1))]−∑K

t=1E
[
Rt
])

≤ (B̂ + C)/V −Ropt. (59)

Because L (Z(K + 1)) ≥ 0 and L (Z(1)) = 0, we prove a)
by letting K →∞ in (59).

To prove b), we consider the ω-only policy Π that satisfies
the Slater condition for some values ε and Φ (ε). By plugging
the policy Π to the RHS of the inequality (†) in (57), we have

ΔL (Z(t))−V · E [Rt|Z(t)
]

≤ B̂ + C − ε
[∑N

i=1 (Qi(t) + Yi(t))
]
−V Φ (ε) , (60)

where the inequality is obtained from (45). Taking iterated
expectations, summing the telescoping series, and rearranging
terms yields

1/K
∑K

t=1

∑N
i=1E [(Qi(t) + Yi(t))]

≤ B̂ + C + V
(

1
K ·�K

t=1E [Rt]− Φ (ε)
)

ε
+

E [L (Z(1))]
εK

.

By letting K → ∞ and plugging the fact that
limK→∞ 1

K

∑K
t=1 E [Rt] ≤ Ropt, we have

lim
K→∞

1
K

∑K−1
t=0

∑N
i=1E [(Qi(t) + Yi(t))]

≤ B̂ + C + V (Ropt − Φ (ε))
ε

. (61)

Then, (47) in b) is proved because Yi(t) ≥ 0. Meanwhile, (61)
also indicates that

lim
K→∞

1
K

∑K
t=1E [Qi(t)] < ∞, ∀i,

lim
K→∞

1
K

∑K
t=1E [Yi(t)] < ∞, ∀i. (62)

That is, all the data queues and virtual queues are strongly
stable. Because strong stability implies rate stability (Theo-
rem 2.8 of [21]), we have Yi(t) is rate stable. By Lemma 2,
the average power constraint (6c) is satisfied with probability
1, which lead to the proof of c). �
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