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Abstract— Mobile-edge computing (MEC) has recently
emerged as a cost-effective paradigm to enhance the computing
capability of hardware-constrained wireless devices (WDs).
In this paper, we first consider a two-user MEC network, where
each WD has a sequence of tasks to execute. In particular, we con-
sider task dependency between the two WDs, where the input of a
task at one WD requires the final task output at the other WD.
Under the considered task-dependency model, we study
the optimal task offloading policy and resource allocation
(e.g., on offloading transmit power and local CPU frequencies)
that minimize the weighted sum of the WDs’ energy consumption
and task execution time. The problem is challenging due to the
combinatorial nature of the offloading decisions among all tasks
and the strong coupling with resource allocation. To tackle this
problem, we first assume that the offloading decisions are given
and derive the closed-form expressions of the optimal offloading
transmit power and local CPU frequencies. Then, an efficient bi-
section search method is proposed to obtain the optimal solutions.
Furthermore, we prove that the optimal offloading decisions
follow an one-climb policy, based on which a reduced-complexity
Gibbs Sampling algorithm is proposed to obtain the optimal
offloading decisions. We then extend the investigation to a general
multi-user scenario, where the input of a task at one WD requires
the final task outputs from multiple other WDs. Numerical
results show that the proposed method can significantly
outperform the other representative benchmarks and efficiently
achieve low complexity with respect to the call graph size.
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I. INTRODUCTION

THE explosive growth of Internet of Things (IoT) in recent
years enables cost-effective interconnections between

tens of billions of wireless devices (WDs), such as sensors and
wearable devices. Due to the stringent size constraint and pro-
duction cost concern, an IoT device is often equipped with a
limited battery and a low-performance on-chip computing unit,
which are recognized as two fundamental impediments for
supporting computation intensive applications in future IoT.
Mobile edge computing (MEC) [2], [3], viewed as an efficient
solution, has attracted significant attention. The key idea of
MEC is to offload intensive computation tasks to the edges
of radio access network, where much more powerful servers
will compute on behalf of the resource-limited WDs. Com-
pared with the traditional mobile cloud computing, MEC can
overcome the drawbacks of high overhead and long backhaul
latency.

In general, MEC has two computation offloading models:
binary and partial offloading [2]. Binary offloading requires
each task to be either computed locally or offloaded to the
MEC server as a whole. Partial offloading, on the other hand,
allows a task to be partitioned and executed both locally and at
the MEC server. In this paper, we consider binary computation
offloading, which is commonly used in IoT systems for
processing non-partitionable simple tasks [4], [5].

Due to the time-varying wireless channel fading, it is not
necessarily optimal to always offload all the computations
to the MEC server, e.g., deep fading may lead to very low
offloading data rate. Meanwhile, wireless resource allocation,
e.g., transmit time and power, needs to be jointly designed
with the computation offloading for optimum computing per-
formance. In this regard, on the one hand, [5]–[8] focused
on the optimal binary offloading policies when each user
only has one task to be executed. Specifically, [8] considered
energy-optimal offloading and resource allocation in the sin-
gle user case. Authors in [7] further considered a wireless
powered MEC and maximize the probability of successful
computations. The performance optimization of multi-user
wireless powered MEC system was later studied in [5], [6].
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Fig. 1. The considered call graph in a two-user MEC network.

On the other hand, [9]–[11] considered a more general sce-
nario, where the binary offloading model is applied to multiple
independent tasks. Specifically, [9] considered multiple mobile
users that each offloads multiple independent tasks to a single
access point. In [10], a single user can offload independent
tasks to multiple edge devices, which then minimizes the
weight sum of WD’s energy consumption and total tasks’
execution latency. In [11], the user offloads independent tasks
to the edge devices and downloads results from them over pre-
scheduled time slots. Energy consumption at both the user and
edge devices is considered therein.

Nonetheless, the above studies do not consider the important
dependency among different tasks in various applications. That
is, a user often needs to execute multiple related tasks, where
the input of one task requires the output of another. Since
the executions are coupled among tasks, the optimal design
becomes much more difficult than the previous case where
independent tasks can be executed in parallel. Call graphs [12]
are commonly used to model the dependency among dif-
ferent tasks [13]–[20]. References [13]–[15] considered the
cloud computing environments with multiple virtual machines
(VMs) and aimed to map the tasks in a general call graph
to the VMs by minimizing the overall execution cost while
meeting deadline constraint. For a single-user MEC system,
[16] considered a general call graph and obtained the joint
optimal task-offloading decisions and transmit power that
minimize the WD’s energy consumption under latency con-
straint. Besides, the authors in [17] considered a sequential
call graph for a single user and derived an optimal one-climb
policy, which means that the execution migrates only at most
once between the WD and the cloud server. This work was
extended to a call graph with a general topology in [18] and a
heuristic task offloading problem was studied in [19]. A multi-
user case was considered in [20], where each independent
WD has multiple tasks with a general call graph and the goal
is to optimize the energy efficiency. Notice that the above
work [16]–[20] considered a non-causal channel model that
assumes perfect knowledge of time-varying channel conditions
throughout the task executions in order to derive the optimal
structure of the offloading decisions in their considered task
call graphs.

The call graphs considered by most of the existing
studies on MEC, such as in [16]–[20], only take into
account the dependency among tasks executed by an indi-
vidual WD. In practice, tasks executed by different WDs
usually have relevance as well. For example, an IoT sensor
often needs to combine the processed data from other sensors.

Consider a smart home environment where a wireless sensor
keeps measuring the temperature of the room and processes the
sensed raw data through a series of operations. The obtained
temperature estimation is useful for controlling other smart
home appliances, e.g., air conditioner and aquarium heating
device. Meanwhile, a wireless controller has the function
of sensing the air humidity and controls the air conditioner
(i.e., temperature setting and service hours) according to its
own processed air humidity data and the room temperature
data estimated by the wireless sensor. Another example is
distributed learning and inference in wireless sensor networks.
For parametric estimation problems, [21] considered one sen-
sor passing its quantized estimation result to the other sensor,
which subsequently generates its own estimation result by
jointly processing its local observation and the received quan-
tized data. For nonparametric approaches, in [22], a sensor can
use the computation results shared by the other sensors to com-
pute a global estimation for least-squares regression through
massage-passing algorithms. The inter-user task dependency
has significant impact to the offloading and resource allocation
decisions. For instance, a WD is likely to offload its task
to the edge server even when the channel condition is poor,
because another WD with time-critical applications is urgently
in need of its computation output. Besides, the exchange
of computation results for dependent tasks also consumes
extra energy and time. In general, the case with inter-user
dependency requires the joint optimization of tasks executions
of all correlated users, which is a challenging problem yet
lacking of concrete study.

In this paper, we consider a task call graph in a two-user
MEC system as shown in Fig. 1, where the computation of an
intermediate task at WD2 requires the output of the last task
at WD1. To the authors’ best knowledge, this is the first
work that exploits the task dependency across different users
in an MEC system. As a first step to study the inter-user
task dependency in an MEC system, we will first consider
a simplified two-user model to capture the optimal solution
properties and the impact of user dependency to the optimal
system performance. Then, we will extend the investigation to
a multi-user scenario as shown in Fig. 5. The main contribu-
tions of this paper are as follows:

• With the inter-user task dependency in Fig. 1, we formu-
late a mixed integer optimization problem to minimize
the weighted sum of the WDs’ energy consumption and
task execution time. The task offloading decisions, local
CPU frequencies and transmit power of each WD are
jointly optimized. The problem is challenging due to the
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combinatorial nature of the offloading decisions among
all tasks in such call graph and the strong coupling with
resource allocation.

• Given the offloading decisions, we first derive closed-
form solutions of the optimal local CPU frequencies
and transmit power of each WD, respectively. We then
establish an inequality condition of the completion time
between the two dependent tasks, based on which an
efficient bi-section search method is proposed to obtain
the optimal resource allocation.

• We show that the optimal offloading decisions follow an
one-climb policy, where each WD offloads its data at
most once to the edge server at the optimum. Based on
the one-climb policy, we propose a reduced-complexity
Gibbs sampling algorithm to obtain the optimal offload-
ing decisions.

• We further extend the study to a general multi-user
scenario, where the input of a task at one WD requires
the final task outputs from multiple other WDs. Then,
we prove that the one-climb policy is still optimal for
each user. Besides, the one-climb based Gibbs sampling
algorithm is adapted to solve the offloading decision
optimization problem in the multi-user scenario.

Simulation results show that our proposed algorithm can
effectively reduce the energy consumption and computation
delay compared with other representative benchmarks. In par-
ticular, it significantly outperforms the scheme that neglects
the task dependency and optimizes the two WDs’ performance
individually. Meanwhile, the proposed method has low com-
putational complexity with respect to the size of call graph.
It is worth mentioning that this paper assumes non-causal
channel information, where the AP is assumed to have full
channel state information (CSI) when uploading/downloading
the tasks. The assumption allows us to analyze the properties
of the optimal solution, especially the structure of the optimal
offloading decisions under inter-user dependency. These prop-
erties are useful in the future design of online algorithms that
consider more practical channel prior knowledge. Meanwhile,
the proposed solution method provides an offline performance
benchmark for evaluating online offloading strategies that will
be investigated in the future.

The rest of the paper is organized as follows. In Section II,
we describe the system model and formulate the problem. The
optimal CPU frequencies and transmit power of each WD
under fixed offloading decisions are derived in Section III.
In Section IV, we first prove that the optimal offloading
decisions follow an one-climb policy and based on that,
a reduced-complexity Gibbs sampling algorithm is proposed.
We extend the study to a general multi-user case in Section V.
In Section VI, the performance of the proposed algorithms
is evaluated via simulations. Finally, we conclude the paper
in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We first consider an MEC system with two WDs and one
access point (AP), all equipped with single antenna. We will
extend to a system with multiple WDs in Section V. The AP is
the gateway of the edge cloud and has a stable power supply.

As shown in Fig. 1, WD1 and WD2 have M and N sequential
tasks to execute, respectively. For simplicity of exposition,
we introduce for each WD an auxiliary node 0 as the entry
task, and auxiliary nodes M + 1, N + 1 as the exit tasks for
WD1 and WD2, respectively. In particular, we assume that
the computations of the two WDs are related, such that the
calculation of an intermediate task of WD2, denoted as k, for
k = 1, ..., N , requires the output of the last task M of WD1.

Each task i of WD j is characterized by a three-item tuple
(Li,j , Ii,j , Oi,j), where i = 0, 1, ...,M + 1 when j = 1, and
i = 0, 1, ..., N + 1 when j = 2. Specifically, Li,j denotes
the computing workload in terms of the total number of
CPU cycles required for accomplishing the task, Ii,j and Oi,j

denote the size of computation input and output data in bits,
respectively. As for the two auxiliary nodes of each WD,
L0,j = LM+1,1 = LN+1,2 = 0. For WD1, it holds that
Ii,1 = Oi−1,1, i = 1, ...,M + 1. As for the WD2, we have

Ii,2 =
{
Oi−1,2 +OM,1, i = k,
Oi−1,2, otherwise.

(1)

Moreover, Ii,j = 0 for the entry node and Oi,j = 0 for the
exit node of each WD.

We assume that the two series of tasks must be initiated
and terminated at the respective WD. That is, the auxiliary
entry and exist tasks must be executed locally, while the
other (M + N) actual tasks can be either executed
locally or offloaded to the edge server. We denote the compu-
tation offloading decision of task i of WD j as ai,j ∈ {0, 1},
where ai,j = 1 denotes edge execution and ai,j = 0 denotes
local computation.

In addition, we assume that each WD is allocated with an
orthogonal channel of equal bandwidth W , thus there is no
interference between the WDs when offloading/downloading.
The wireless channel gains between the WD j and the AP
when offloading and downloading task i are denoted
as hi,j and gi,j , respectively. Besides, we assume additive
white Gaussian noise (AWGN) with zero mean and equal
variance σ2 at all receivers for each user.

Remark 1: In many low-power IoT systems, e.g., wire-
less sensor networks, the data rate for task offloading is
not demanding (e.g., tens to several hundred kbps) and the
required bandwidth is usually small [23]. For instance, in the
narrowband Internet of Things (NB-IoT) system, a 10MHz
LTE carrier can supply orthogonal transmissions of more than
50 users [24]. In addition, in some mobile communication
systems such as LTE, each user is allocated a dedicated
resource block throughout its transmission. Besides, according
to the one-climb offloading property derived in Section IV,
each WD offloads its data at most once to the edge server
at the optimum, which indicates that the chance of the two
WDs offloading at the same time to contend for bandwidth is
very small in general. Therefore, in this paper, we assume that
each device is allocated with an orthogonal channel of equal
bandwidth when the number of WDs is moderate [9,10,20].

In the following, we discuss the computation overhead in
terms of execution time and energy consumption for local and
edge computing, respectively.
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A. Local Computing

We denote the CPU frequency of WD j for computing task i
as fi,j . Thus, the local computation execution time can be
given by

τ l
i,j =

Li,j

fi,j
, (2)

and the corresponding energy consumption is [2]

el
i,j = κLi,jf

2
i,j = κ

(Li,j)3

(τ l
i,j)2

, (3)

where κ is the fixed effective switched capacitance parameter
depending on the chip architecture.

B. Edge Computing

Let pi,j denote the transmit power of WD j when offloading
task i to the AP, and we can express the uplink data rate for
offloading task i of WD j as

Ru
i,j = W log2

(
1 +

pi,jhi,j

σ2

)
. (4)

From (4), the transmission time of WD j when offloading
task i is expressed as

τu
i,j =

Oi−1,j

Ru
i,j

. (5)

Define f(x) � σ2
(
2

x
W − 1

)
. It follows from (4) and (5) that

pi,j =
1
hi,j

f

(
Oi−1,j

τu
i,j

)
. (6)

Then, the transmission energy consumption is

eu
i,j = pi,jτ

u
i,j =

τu
i,j

hi,j
f

(
Oi−1,j

τu
i,j

)
. (7)

Notice that (7) is convex in τu
i,j since (7) is the perspective

function with respect to τu
i,j of a convex function f(x) [25].

The execution time of task i of WD j on the edge is given
by τc

i,j = Li,j

fc
, where fc is the constant CPU frequency of the

edge server.
Remark 2: Since we consider that each WD has a sequence

of tasks to execute in the MEC network, there are at most J
tasks being computed at the AP simultaneously, where J is
the number of WDs. Besides, in practice, the server located at
the AP is usually multi-core [9-11,16,20], thus can handle the
J tasks at the same time when J is moderate. In this paper,
we assume that the AP has a multi-core processor and each
core has a fixed service rate fc assigned to process one task.

Furthermore, as for the downlink transmission, we denote
the fixed transmit power of the AP by P0. Thus, the downlink
data rate for feeding the i-th task’s input of WD j from
the AP when computing task i locally can be expressed as

Rd
i,j = W log2

(
1 +

P0gi,j

σ2

)
. (8)

Likewise, the time needed for the downlink transmission is
given by τd

i,j = Oi−1,j

Rd
i,j

.

Fig. 2. Illustration of the task dependency between two WDs.

C. Task Dependency Model

As shown in Fig. 2, the task dependency model between the
two WDs can be one of the following four cases, depending
on the values of aM,1 and ak,2.

• Case 1: When both the M -th task of WD1 and the
k-th task of WD2 are executed locally, i.e., aM,1 = 0
and ak,2 = 0, the AP acts as a relay node. First,
the WD1 uploads its output of M -th task to the AP.
Then, the AP forwards this information to the WD2.
Specifically, the uplink transmission time and energy in
this process are

τu
M+1,1 =

OM,1

Ru
M+1,1

(9)

and

eu
M+1,1 = pM+1,1τ

u
M+1,1, (10)

respectively, where Ru
M+1,1 and pM+1,1 are the corre-

sponding uplink data rate and uplink transmit power,
respectively. As for the downlink transmission, the trans-
mission time is denoted as

τd
k′,2 =

OM,1

Rd
k,2

. (11)

• Case 2: When the M -th task of WD1 is executed at
the edge and the k-th task of WD2 is computed locally,
i.e., aM,1 = 1 and ak,2 = 0, the output of M -th task
of WD1 is downloaded to the WD2 after execution at
the edge.

• Case 3: In this case, the M -th task of WD1 is executed
locally and the k-th task of WD2 is offloaded to the
edge, i.e., aM,1 = 0 and ak,2 = 1. The WD1 needs to
upload the result before the computation of the k-th task
of WD2 at the edge.

• Case 4: In this case, both the M -th task of WD1 and the
k-th task of WD2 are executed at the edge, i.e., aM,1 = 1
and ak,2 = 1. Therefore, neither uplink nor downlink
transmission is needed.
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D. Problem Formulation

From the above discussion, in order to obtain the total tasks
execution time of WD1, we first denote the time spent on
computations both locally and at the edge server by T comp

1 ,
which can be expressed as

T comp
1 =

M∑
i=1

[
(1 − ai,1)τ l

i,1 + ai,1τ
c
i,1

]
. (12)

As for the communication delay T tran
1 consumed on offload-

ing/downloading the task data to/from the AP, we have

T tran
1 =

M+1∑
i=1

[
ai,1(1 − ai−1,1)τu

i,1 + (1 − ai,1)ai−1,1τ
d
i,1

]

=
M+1∑
i=1

[
ai,1τ

u
i,1 + ai−1,1τ

d
i,1 − ai−1,1ai,1(τu

i,1 + τd
i,1)

]
.

(13)

Note that there is no communication delay for the i-th task
if ai−1,1 = ai,1, i.e., the two tasks are computed at the same
device. Otherwise, if ai−1,1 = 0 and ai,1 = 1, the communica-
tion delay is due to the uplink transmission time τu

i,1, whereas,
if ai−1,1 = 1 and ai,1 = 0, the communication delay is due to
the downlink transmission time τd

i,1. Therefore, the total tasks
execution time of WD1 is

T1 = T comp
1 + T tran

1 . (14)

Furthermore, we can calculate the total energy consumption
of WD1 by

E1 =
M∑
i=1

[
(1 − ai,1)el

i,1 + ai,1(1 − ai−1,1)eu
i,1

]
+(1 − aM,1)eu

M+1,1, (15)

which consists of the total execution energy of M tasks and
the energy consumption on offloading the final result if the
M -th task is computed locally, i.e., when aM,1 = 0. Note that
the energy cost for the uplink transmission eu

i,1, i ∈ {1, ...,M}
occurs in (15) only if ai,1 = 1 and ai−1,1 = 0.

Similarly, the total computation energy consumption of
WD2 can be expressed as

E2 =
N∑

i=1

[
(1 − ai,2)el

i,2 + ai,2(1 − ai−1,2)eu
i,2

]
. (16)

As for the execution time of WD2, we first consider the
waiting time until the output of the M -th task of WD1 reaches
WD2, denoted by Twait

1 , as follows.

Twait
1 =

M∑
i=1

[
(1 − ai,1)τ l

i,1 + ai,1(τc
i,1 + τu

i,1)

+ ai−1,1τ
d
i,1 − ai−1,1ai,1(τu

i,1 + τd
i,1)

]
+(1 − aM,1)τu

M+1,1 + (1 − ak,2)τd
k′,2. (17)

It consists of the total execution time of M tasks of WD1, and
the transmit time of the output of the M -th task as shown in
the four cases of Fig. 2.

Meanwhile, the waiting time until the output of the
(k−1)-th task of WD2 is ready, denoted by Twait

2 , is given by

Twait
2 =

k−1∑
i=1

[
(1 − ai,2)τ l

i,2 + ai,2(τc
i,2 + τu

i,2)

+ ai−1,2τ
d
i,2 − ai−1,2ai,2(τu

i,2 + τd
i,2)

]
+ak,2τ

u
k,2 + ak−1,2τ

d
k,2 − ak−1,2ak,2(τu

k,2 + τd
k,2),

(18)

which includes the total execution time of the first k−1 tasks
and the transmission time on offloading task k (i.e., when
ak−1,2 = 0, ak,2 = 1) or downloading the output of task
(k− 1) to WD2 (i.e., when ak−1,2 = 1, ak,2 = 0). From (17)
and (18), the total waiting time before the k-th task of WD2 is
ready for execution is

Twait = max
{
Twait

1 , Twait
2

}
. (19)

Accordingly, the total task execution time of WD2 equals
to Twait plus the execution time of tasks from k to N , i.e.,

T2 = Twait +
N∑

i=k

[
(1 − ai,2)τ l

i,2 + ai,2τ
c
i,2

]

+
N+1∑

i=k+1

[
ai,2τ

u
i,2 + ai−1,2τ

d
i,2 − ai−1,2ai,2(τu

i,2 + τd
i,2)

]
.

(20)

In this paper, we consider the energy-time cost (ETC) as the
performance metric [2], [10], which is defined as the weighted
sum of total energy consumption and execution time, i.e.,

η1 = βE
1 E1 + βT

1 T1, (21)

where 0 < βE
1 < 1 and 0 ≤ βT

1 < 1 denote the weights
of energy consumption and computation completion time
for WD1, respectively. Without loss of generality, it is assumed
that the weights are related by βE

1 = 1 − βT
1 . Accordingly,

the ETC of WD2 is

η2 = βE
2 E2 + βT

2 T2, (22)

where 0 < βE
2 < 1 and 0 < βT

2 < 1 denote the two
weighting parameters satisfying βE

2 = 1 − βT
2 . It is worth

noting that βT
1 = 0 represents a special case which will be

discussed in Section III, while βT
2 = 0 leads to a trivial

solution that the WD2 will take infinitely long time to finish its
task executions. In practice, we allow different WDs to choose
different wights to meet user-specific demands. For example,
a WD j with delay-sensitive applications, such as watching
movies and online game, prefers to choose a larger βT

j to
reduce the delay. Besides, a WD j with low battery energy
tends to set a larger βE

j to save more energy.
Denoting a � {ai,j}, p � {pi,j}, and f � {fi,j}, we are

interested in minimizing the total ETC of the two WDs by
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solving the following problem:

(P1) min
(a,p,f)

η1 + η2,

s.t. 0 ≤ pi,j ≤ Ppeak,

0 ≤ fi,j ≤ fpeak,

ai,j ∈ {0, 1}, ∀i, j, (23)

where the first two constraints correspond to the peak transmit
power and peak CPU frequency. We assume fc > fpeak in this
paper. For practical implementation, it is assumed that there
exists a controller at the AP to obtain the optimal offloading
and resource allocation decisions by solving (P1). Then, each
WD can receive the control signal from the controller at the
AP to perform optimal task offloading and resource allocation.
Because of the one-to-one mappings between fi,j and τ l

i,j

in (2) and between pi,j and τu
i,j in (6), it is equivalent to

optimize (P1) over the time allocation (τ l
i,j , τ

u
i,j). By intro-

ducing an auxiliary variable t = max
{
Twait

1 , Twait
2

}
, (P1)

can be equivalently expressed as

(P2) min
(a,{τu

i,j},{τ l
i,j},t)

η1 + η2,

s.t. t ≥ Twait
1 , t ≥ Twait

2 ,

τu
i,j ≥ Oi−1,j

W log2

(
1 + Ppeakhi,j

σ2

) ,
τ l
i,j ≥ Li,j

fpeak
,

ai,j ∈ {0, 1}, ∀i, j. (24)

Suppose that we have obtained the optimal solution
{a∗, (τu

i,j)
∗, (τ l

i,j)
∗} of (P2). Then, we can easily retrieve the

unique f∗
i,j and p∗i,j in (P1) using (2) and (6), respectively.

Notice that (P2) is non-convex in general due to the binary
variables a. However, it can be seen that for any given a,
the remaining optimization over (τ l

i,j , τ
u
i,j , t) is a convex prob-

lem. In the following section, we assume that the offloading
decision a is given and study some interesting properties of the
optimal CPU frequencies and the transmit power of each WD,
based on which an efficient method is proposed to obtain the
optimal solutions.

III. OPTIMAL RESOURCE ALLOCATION UNDER

FIXED OFFLOADING DECISION

A. Optimal Solution of (P2) Given a

Suppose that a is given. A partial Lagrangian of
Problem (P2) is given by

L({τu
i,j}, {τ l

i,j}, t, λ, μ) = η1 + η2 + λ
(
Twait

1 − t
)

+μ
(
Twait

2 − t
)
, (25)

where λ ≥ 0 and μ ≥ 0 denote the dual variables associated
with the corresponding constraints.

Let λ∗ and μ∗ denote the optimal dual variables. We derive
the closed-form expressions of the optimal CPU frequencies
and transmit power of each WD as follows.

Proposition 3.1: ∀i, j with ai,j = 0, the optimal CPU
frequencies of the two WDs satisfy

f∗
i,1 = min

{
3

√
βT

1 + λ∗

2κβE
1

, fpeak

}
, ∀i ∈ {1, ..,M}, (26)

f∗
i,2 =

⎧⎪⎨
⎪⎩

min
{

3

√
μ∗

2κβE
2
, fpeak

}
, i ∈ {1, ..., k − 1},

min
{

3

√
βT
2

2κβE
2
, fpeak

}
, i ∈ {k, ..., N}.

(27)

Proof: Please refer to Appendix A.
From Proposition 3.1, we have the following observations:
• The optimal local CPU frequencies are the same for all

the tasks of the same type, i.e., i ∈ {1, ...,M} in WD1,
i ∈ {1, ..., k − 1} or i ∈ {k, ..., N} in WD2, regardless
of the wireless channel conditions and workloads.

• For each task of WD1, when βT
1 or λ∗ increases

(a larger λ∗ corresponds to a tighter task dependency
constraint at optimum), the optimal strategy is to speed
up local computing. However, with the increase of βE

1 ,
the WD1 prefers to save energy with a lower optimal f∗

i,1.
• For the i-th task of WD2, i ∈ {1, ..., k − 1}, a larger
μ∗ leads to a higher optimal f∗

i,2. On the other hand,
the optimal f∗

i,2 is not related to μ∗ for i ∈ {k, ..., N},
as the corresponding executions are not constrained by
the WDs’ dependency.

Proposition 3.2: ∀i with ai,1 = 1, the optimal transmit
power of WD1 p∗i,1 is expressed in (28), shown at the top of

the next page, where A1 = 1+ βT
1 +λ∗

βE
1 Ppeak

, B1 = hi,1(β
T
1 +λ∗)

βE
1 σ2 −1,

A2 = 1 + λ∗

βE
1 Ppeak

and B2 = hi,1λ∗

βE
1 σ2 − 1. Besides, ∀i

with ai,2 = 1, the optimal transmit power of WD2 p∗i,2 is
expressed in (29), shown at the top of the next page, where
A3 = 1 + βT

2
βE
2 Ppeak

, B3 = hi,2βT
2

βE
2 σ2 − 1, A4 = 1 + μ∗

βE
2 Ppeak

and

B4 = hi,2μ∗

βE
2 σ2 − 1.

Here, W(x) denotes the Lambert W function, which is the
inverse function of z exp(z) = x, i.e., z = W(x).

Proof: Please refer to Appendix B.
From Proposition 3.2, we obtain the following observations:
• The optimal transmit power is inversely proportional to

the channel gain hi,j when hi,j is above a threshold, and
equals the peak power Ppeak when the channel gain is
below the threshold.

• With the increase of peak transmit power Ppeak , the value
of the threshold is decreasing. This means that for a
larger Ppeak , the WDs tend to transmit at the maximum
power when meeting worse channel condition.

Based on Propositions 3.1 and 3.2, our precedent conference
paper [1] applies an ellipsoid method [25] to search for the
optimal dual variables (λ, μ). The ellipsoid method guarantees
to converge because (P2) is a convex problem given a.
In general, the ellipsoid method may take a long time to
converge.

In this paper, we further study some interesting properties of
an optimal solution in the following Lemma 3.1 and 3.2, based
on which a reduced complexity one-dimensional bi-section
search method is proposed in the following subsection.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

If i ∈ {1, ...,M}, p∗i,1 =

⎧⎪⎪⎨
⎪⎪⎩
Ppeak, hi,1 <

σ2

Ppeak

[
A1

−W (−A1e−A1)
− 1

]
,

σ2

hi,1

[
B1

W (B1e−1)
− 1

]
, otherwise.

If i = M + 1, p∗i,1 =

⎧⎪⎪⎨
⎪⎪⎩
Ppeak, hi,1 <

σ2

Ppeak

[
A2

−W (−A2e−A2)
− 1

]
,

σ2

hi,1

[
B2

W (B2e−1)
− 1

]
, otherwise.

(28)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

If i ∈ {1, ..., k}, p∗i,2 =

⎧⎪⎪⎨
⎪⎪⎩
Ppeak, hi,2 <

σ2

Ppeak

[
A4

−W (−A4e−A4)
− 1

]
,

σ2

hi,2

[
B4

W (B4e−1)
− 1

]
, otherwise.

If i ∈ {k + 1, ..., N}, p∗i,2 =

⎧⎪⎪⎨
⎪⎪⎩
Ppeak, hi,2 <

σ2

Ppeak

[
A3

−W (−A3e−A3)
− 1

]
,

σ2

hi,2

[
B3

W (B3e−1)
− 1

]
, otherwise.

(29)

Lemma 3.1: Twait
1 ≤ Twait

2 and μ∗ > 0 hold at the
optimum of (P2).

Proof: We prove this lemma by contradiction. Suppose
that there exists an optimal solution {τ l

i,j , τ
u
i,j} with Twait

1 >

Twait
2 . According to the KKT conditions λ∗

(
Twait

1 − t
)

= 0
and μ∗ (Twait

2 − t
)

= 0, we have λ∗ > 0 and μ∗ = 0.
As λ∗ > 0, according to (26) and (28), the optimal f∗

i,1 and
p∗i,1 are finite, which means that {(τ l

i,1)
∗, (τu

i,1)
∗} are finite

for all i. Hence, Twait
1 is finite. However, when μ∗ = 0,

we have the optimal (τ l
i,2)

∗ → ∞, i ∈ {1, ..., k − 1}
from (27) and (τu

i,2)
∗ → ∞, i ∈ {1, ..., k} from (29).

Thus, we have Twait
2 → ∞. This contradicts with the

assumption that Twait
1 > Twait

2 , and thus completes the
proof.

The above lemma indicates that the k-th task’s waiting time
for the input data stream OM,1 from WD1 is not larger than
that for the other input Ok−1,2 from WD2. In other words,
WD2 always receives the task output from WD1 first and
then waits until its local tasks finish before computing the
k-th task. In addition to the results in Lemma 3.1, the following
lemma 3.2 shows two special cases, where Twait

1 = Twait
2 is

satisfied.
Lemma 3.2: Twait

1 = Twait
2 holds at the optimum

of (P2) if one of the following two sufficient conditions is
satisfied:

1) βT
1 = 0;

2) 0 < βT
1 < 1 and aM,1 = 0.

Proof: The proof is similar as that of Lemma 3.1 and is
omitted here.

Specifically, in the first case, the role of WD1 is solely to
provide needed data to WD2 and minimizing its own execution
time is not an objective. Nonetheless, the execution time
of WD1 still affects that of WD2, which is to be minimized.
In the second case, the M -th task of WD1 chooses to perform
local computing, i.e., aM,1 = 0.

B. A Low-complexity Bi-Section Search Method

According to Lemma 3.1, we have t = max{Twait
1 ,

Twait
2 } = Twait

2 . Therefore, Problem (P2) is simplified as

(P3) min
(a,p,f)

η1 + η2,

s.t. Twait
1 ≤ Twait

2 ,

0 ≤ pi,j ≤ Ppeak,

0 ≤ fi,j ≤ fpeak,

ai,j ∈ {0, 1}, ∀i, j.
Similarly, the Lagrangian of Problem (P3) is

L′(p, f , ν) = η1 + η2 + ν
(
Twait

1 − Twait
2

)
, (30)

where ν ≥ 0 denotes the dual variable associated with the
constraint Twait

1 ≤ Twait
2 .

By applying the KKT conditions in (P3), we can obtain
the optimal solutions of f and p. The details are omit-
ted here. By combining with the optimal solutions in
Proposition 3.1 and Proposition 3.2, we have the following
proposition.

Proposition 3.3: The optimal dual variables {λ∗, μ∗} in (P2)
and ν∗ in (P3) are related by{

λ∗ = ν∗,
μ∗ = βT

2 − ν∗, (31)

where ν∗ ∈ [0, βT
2 ). In other words, we have

λ∗ + μ∗ = βT
2 . (32)

Note that (P3) is convex given the offloading decision
a. Thus, ν∗

(
Twait

1 − Twait
2

)
= 0 is a sufficient condition

for optimality. By defining ψ(ν) = Twait
1 − Twait

2 , we can
efficiently obtain the optimal ν∗ based on the following
proposition.

Proposition 3.4: ψ(ν) is a monotonically decreasing func-
tion in ν ∈ [0, βT

2 ). Besides, a unique ν∗ ∈ (0, βT
2 ) that

satisfies ψ(ν∗) = 0 exists when ψ(ν = 0) > 0.
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Algorithm 1 Bi-Section Search Method for Problem (P3) With
Given Offloading Decision a
1: initialize ε = 0.001;
2: νUB = βT

2 , νLB = 0;
3: if (Twait

1 − Twait
2 )|ν=νLB < 0 then

4: Set ν = νLB ,λ = ν, μ = βT
2 − ν;

5: Compute f according to (26) and (27);
6: Compute p according to (28) and (29);
7: else
8: repeat
9: Set ν = νUB+νLB

2 , λ = ν, μ = βT
2 − ν;

10: Compute f according to (26) and (27);
11: Compute p according to (28) and (29);
12: if Twait

1 − Twait
2 < 0 then

13: νUB = ν
14: else
15: νLB = ν
16: end if
17: until

∣∣Twait
1 − Twait

2

∣∣ < ε.
18: end if

Proof: It can be proved that both fi,1(ν) and pi,1(ν)
are monotonically increasing function in ν, while fi,2(ν) and
pi,2(ν), 1 ≤ i ≤ k, are monotonically decreasing function
in ν. Therefore, all terms in ψ(ν) decrease with ν, thus ψ(ν)
is a monotonically decreasing function in ν. Meanwhile, when
ν → βT

2 , it holds that fi,2(ν) → 0 and pi,2(ν) → 0, 1 ≤ i ≤ k,
which leads to ψ(ν) → −∞ when ν → βT

2 . Together with the
result that ψ(ν) is a monotonically decreasing function, there
must exist a unique ν∗ ∈ (0, βT

2 ) that satisfies ψ(ν) = 0 when
ψ(ν = 0) > 0.

With Proposition 3.4, when ψ(ν = 0) > 0, the optimal ν∗

can be efficiently obtained via a bi-section search over ν∗ ∈
(0, βT

2 ) that satisfies ψ(ν) = 0. If ψ(ν = 0) < 0, we have
ν∗ = 0 according to the KKT condition ν∗ ∗ ψ(ν∗) = 0.
Now that ν∗ is obtained, the optimal {f∗,p∗} can be directly
calculated using (31), (26), (27), (28) and (29). Due to the
convexity, the primal and dual optimal values are the same
for (P3) given a.

The pseudo-code of the bi-section search method is
illustrated in Algorithm 1. Given a precision parameter ε,

it takes O
(
log2

(
βT
2
ε

))
number iterations for Algorithm 1 to

converge. In each iteration, the computational complexity is
proportional to the number of tasks in WDs, i.e., O(M +N).
Therefore, the overall complexity of Algorithm 1
is O(M +N).

IV. OPTIMIZATION OF OFFLOADING DECISION

In section III, we efficiently obtain the optimal {f ,p} of
(P1) once a is given. Intuitively, one can enumerate all 2M+N

feasible a and choose the optimal one that yields the minimum
objective in (P2). However, this brute-force search quickly
becomes computationally prohibitive as (M + N) increases.
In this section, we propose an efficient optimal Gibbs sampling
algorithm to reduce the complexity.

Fig. 3. Illustration of a two-time offloading and an one-climb scenarios
in WD j.

A. One-Climb Policy

Here, we first show in the following Theorem 1 that the
optimal offloading decision a has an one-climb structure.

Theorem 1 (one-climb policy): Assuming that fc > fpeak,
the execution for each WD migrates at most once from
the WD to the edge server at the optimum.

Proof: In the following, we prove the one-climb policy
by contradiction. Suppose that the optimal offloading decision
allows a WD to offload its data more than one time, as shown
in the Fig. 3(a). Under the two-time offloading scheme, tasks
frommj to qj−1 are migrated to the edge server for execution.
Then, tasks from qj to sj execute at the WD j, followed by
tasks from sj +1 to nj migrated to the edge server, where j is
the index of WDs. As for the one-climb scheme in Fig. 3(b),
tasks of WD j from qj to sj are, however, executed on the
edge server.

We denote the optimal offloading decision, local CPU
frequencies and transmit power of WD j in the two-time and
one-climb offloading schemes as {âj , f̂j , p̂j} and {ãj , f̃j , p̃j},
respectively. By the optimality assumption, we have

η1(â1, f̂1, p̂1) + η2(â2, f̂2, p̂2) < η1(ã1, f̃1, p̃1)
+η2(ã2, f̃2, p̃2). (33)

For the two-time offloading policy in WD1, the total exe-
cution time from the m1-th task to the n1-th task can be
expressed as

T̂m1∼n1
1 =

q1−1∑
i=m1

(τc
i,1) + τd

q1,1 +
s1∑

i=q1

(τ l
i,1)

+τu
s1+1,1 +

n1∑
i=s1+1

τc
i,1. (34)

As for the one-climb policy in WD1, we have

T̃m1∼n1
1 =

n1∑
i=m1

τc
i,1. (35)

Since the computing speed of the edge server is higher than
that of the WDs, i.e., fc > fpeak, the following inequalities
hold for the q1-th and s1-th tasks:

τc
q1,1 < τ l

q1,1 < τ l
q1,1 + τd

q1,1, (36)

τc
s1,1 < τ l

s1,1 < τ l
s1,1 + τu

s1+1,1. (37)
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In addition, we have τc
i,1 < τ l

i,1, i = q1, ..., s1 for the tasks
of WD1 between q1 and s1. Therefore, it can be shown that
T̂m1∼n1

1 > T̃m1∼n1
1 .

On the other hand, with respect to the energy consumption
of WD1 from the m1-th task to the n1-th task, we observe
that the two-time offloading scheme consumes more energy
compared with the one-climb policy due to the local tasks
computing el

i,1 from q1 to s1, the (s1 +1)-th task’s offloading
eu

s1+1,1 and the M -th task’s offloading eu
M+1,1 as illustrated

in Fig. 2 (if M ∈ {q1, ..., s1}). That is, Êm1∼n1
1 > Ẽm1∼n1

1 ,
where Êm1∼n1

1 and Ẽm1∼n1
1 denote the energy consumption

from the m1-th task to the n1-th task in the two-time and
one-climb offloading schemes, respectively.

Similarly, as for the WD2, if k /∈ {q2, ..., s2}, T̂m2∼n2
2 >

T̃m2∼n2
2 and Êm2∼n2

2 > Ẽm2∼n2
2 hold according to the above

discussion. Since extra time cost τd
k′,2 will be introduced if

ak,2 = 0 according to the task dependency model illustrated
in Fig. 2, we still have T̂m2∼n2

2 > T̃m2∼n2
2 and Êm2∼n2

2 >
Ẽm2∼n2

2 when k ∈ {q2, ..., s2}.
Therefore, for each WD j, we have

T̂
mj∼nj

j > T̃
mj∼nj

j , (38)

and

Ê
mj∼nj

j > Ẽ
mj∼nj

j . (39)

We first consider the optimal solution {âj , f̂j , p̂j} in
the two-time offloading scheme. According to Lemma 3.1,
Twait

1 ≤ Twait
2 holds. Then, by switching the offload-

ing decision â1 to ã1 for WD1 and keeping the other
variables unchanged, E1, T1 and Twait

1 decrease according
to (38) and (39). Therefore, Twait

1 ≤ Twait
2 still holds at

the solution {ã1, â2, f̂j , p̂j}, which leads to fixed E2 and T2.
Accordingly, we have

η1(â1, f̂1, p̂1) + η2(â2, f̂2, p̂2) > η1(ã1, f̂1, p̂1)
+η2(â2, f̂2, p̂2). (40)

Then, by further switching the offloading decision â2 to ã2

for WD2 and keeping the other variables unchanged, E2 and
Twait

2 do not increase according to (38) and (39). Therefore,
the term Twait = max{Twait

1 , Twait
2 } in (20) is also not

increasing, which leads to a non-increasing T2. Thus, we have

η1(ã1, f̂1, p̂1) + η2(â2, f̂2, p̂2) > η1(ã1, f̂1, p̂1)
+η2(ã2, f̂2, p̂2). (41)

Furthermore, note that the optimal {f̂j , p̂j} in a two-time
offloading scheme is a feasible solution in the one-climb
offloading scheme of (P1), which indicates that

η1(ã1, f̂1, p̂1) + η2(ã2, f̂2, p̂2) ≥ η1(ã1, f̃1, p̃1)
+η2(ã2, f̃2, p̃2). (42)

Combining the above inequation (40), (41), (42), we have

η1(â1, f̂1, p̂1) + η2(â2, f̂2, p̂2) > η1(ã1, f̃1, p̃1)
+η2(ã2, f̃2, p̃2). (43)

Therefore, it contradicts the assumption. Thus, for each WD,
the one-climb policy is better than two-time offloading

TABLE I

THE NUMBER OF SEARCHES PERFORMED BY THE ONE-CLIMB
BASED SCHEME AND THE BRUTE-FORCE METHOD

UNDER DIFFERENT M AND N

scheme. Similarly, the same conclusion can be drawn by
comparing the one-climb policy with a φ-time offloading
scheme, where φ ≥ 2. It completes the proof.

The one-climb policy indicates that each WD either offloads
its data only once to the edge server or does not offload at
all at the optimum. Therefore, we only need to enumerate
the offloading decisions that satisfy the one-climb policy,
instead of all the 2M+N feasible offloading decisions (as in the
precedent conference paper [1]). Specifically, under the one-
climb policy, if task offloading is necessary, we only need
to search for the two tasks of each WD, i.e., the tasks that
data is offloaded to and downloaded from the AP, respectively.
For WD1, we need to search (((M + 1)M)/2) + 1 such
combinations of tasks, including the special case that the
WD does not offload throughout the execution time. Simi-
larly, WD2 has (((N + 1)N)/2) + 1 such combinations to
search. Therefore, the total search space is [(((M+1)M)/2)+
1][(((N+1)N)/2)+1], i.e., O(M2 ·N2), which is significantly
lower than the brute-force based method when M or N is
larger. Table I illustrates the number of searches performed by
the one-climb based scheme and the brute-force method under
different M and N .

Nonetheless, the proposed searching method may still
induce high computational complexity when M or N is large.
In the following, we further propose a reduced-complexity
Gibbs sampling algorithm to optimize the offloading decisions.

B. One-Climb Policy-Based Gibbs Sampling

Gibbs Sampling was originally introduced to model the
physical interactions between molecules and particles. There
are many modern engineering applications of Gibbs sampling,
e.g., on image processing in [26] and nonconvex power control
in [27]. Specifically, Gibbs Sampling solves an optimization
problem with the following form:

min
x∈X

J(x), (44)

where the variable x is a D-dim row vector with element xd,
d = 1, ..., D, and the objective function J(x) can be of any
form.

In Gibbs Sampling, the value of each xd is updated
iteratively and asynchronously according to the probability
distribution Λd(x−d) = (Λd(xd|x−d), ∀xd ∈ Xd) with

Λd(xd|x−d) =
exp (−J (xd,x−d) /T )∑

x′
d∈Xd

exp (−J (x′d,x−d) /T )
, (45)

where x−d = (x1, ..., xd−1, xd+1, ..., xD) and T > 0
denotes the temperature parameter. According to (45),
a xd that yields a better objective function value (i.e., a smaller
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Algorithm 2 The Proposed Gibbs Sampling Algorithm

1: initialize a(0)
1 , a(0)

2 , T (1) and θ = 1.
2: repeat
3: Generate A′

a
(θ−1)
1

and A′
a
(θ−1)
2

.

4: Sample a(θ)
1 according to (46).

5: Sample a(θ)
2 according to (47).

6: Set θ = θ + 1 and T (θ) = αT (θ − 1).
7: until the optimal objective value of (P1) ϕ converges.

Fig. 4. An example of the generating rule for the sampling sets A′
a1

and
A′

a2
with given a1 = [1111] and a2 = [001100].

J(·) here) will be picked with a higher probability. This
is especially true when T is small. According to the proof
in [Section IV, 27], a Gibbs sampling algorithm obtains the
optimal solution when it converges.

In our problem, we denote the offloading decisions corre-
sponding to the WD1 and WD2 by two vectors, a1 and a2,
respectively that satisfy the one-climb policy. ϕ(a1, a2)
denotes the optimal objective value of (P1) given a1 and a2.
In addition, A′

a1
and A′

a2
denote the sampling sets generated

from a1 and a2, respectively. The generating rule is that with
given a1 and a2, at most one entry of a1 and a2 swaps from
1 to 0 (or 0 to 1) while the newly generated vector still satisfies
the one-climb policy for each WD. Thus, there only exists a
small number of feasible elements in A′

a1
and A′

a2
. In Fig. 4,

we show an example to illustrate the generating rule for the
sampling sets A′

a1
and A′

a2
with given a1 and a2. Compared

to Gibbs sampling without the one-climb policy, 40% and
28.57% lower search spaces corresponding to a1 and a2 can
be achieved, respectively in the example of Fig. 4.

In one-climb policy based Gibbs sampling, the offloading
decisions of WD1 and WD2 are updated to a(θ)

1 and a(θ)
2

in the θ-th sampling according to the probability distribu-
tions Λ1(a1|a(θ−1)

2 ) = {Λ1(a1|a(θ−1)
2 ), ∀a1 ∈ A′

a
(θ−1)
1

} and

Λ2(a2|a(θ)
1 ) = {Λ2(a2|a(θ)

1 ), ∀a2 ∈ A′
a
(θ−1)
2

} with

Λ1(a1|a(θ−1)
2 ) =

exp
(
−ϕ(a1,a

(θ−1)
2 )/T

)
∑

a′
1∈A′

a
(θ−1)
1

exp
(
−ϕ(a′

1,a
(θ−1)
2 )/T

)
(46)

and

Λ2(a2|a(θ)
1 ) =

exp
(
−ϕ(a2,a

(θ)
1 )/T

)
∑

a′
2∈A′

a
(θ−1)
2

exp
(
−ϕ(a′

2,a
(θ)
1 )/T

) , (47)

respectively. According to (46) and (47), a1 or a2 that yields a
smaller objective function value will be picked with a higher
probability. However, one difficulty is that when T is very
small, the time it takes to reach equilibrium can be exces-
sive [28]. This drawback can be overcome by using a slowly
decreasing “cooling schedule” T (θ) = αT (θ − 1), where
α < 1 is the cooling rate. The pseudo-code of one-climb policy
based Gibbs sampling algorithm is shown in Algorithm 2.

V. THE MULTIUSER SCENARIO

In this section, we extend the proposed inter-user task
dependency model consisting of only two users to a general
multi-user case, where the input of a task at one WD requires
the final task outputs from multiple other WDs. We assume
that there are J WDs. As shown in Fig. 5, the calculation of
the intermediate task k of WD2 requires the final task outputs
from the other J − 1 WDs. Specifically, for WD2, we have
Ik,2 = Ok−1,2 +

∑
j �=2OMj ,j , where Mj is the number of

sequential tasks to execute at WD j, for j 	= 2.
In this case, the waiting time until the output of the

Mj-th task of WD j (j 	= 2) reaches WD2, denoted by Twait
j ,

can be expressed as

Twait
j =

Mj∑
i=1

[
(1 − ai,j)τ l

i,j + ai,j(τc
i,j + τu

i,j)

+ ai−1,jτ
d
i,j − ai−1,jai,j(τu

i,j + τd
i,j)

]

+(1 − aMj ,j)τu
Mj+1,j + (1 − ak,2)

OMj ,j

Rd
k,2

. (48)

Therefore, the total waiting time before the joint task is
ready for execution in (19) becomes Twait = max{Twait

1 ,
Twait

2 , ..., Twait
j , ..., Twait

J }. We omit some details on formu-
lation due to the page limit and rewrite the optimization
problem (P2) in such multi-user task dependency model as

(P4) min
(a,{τu

i,j},{τ l
i,j},t)

J∑
j=1

ηj ,

s.t. t ≥ Twait
1 , t ≥ Twait

2 , ...,

t ≥ Twait
j , ..., t ≥ Twait

J ,

τu
i,j ≥ Oi−1,j

W log2

(
1 + Ppeakhi,j

σ2

) ,
τ l
i,j ≥ Li,j

fpeak
,

ai,j ∈ {0, 1}, ∀i, j.
Lemma 5.1: ∀j(j 	= 2), Twait

j ≤ Twait
2 holds at the

optimum.
Proof: The proof follows a similar technique in

Lemma 3.1 by analyzing the KKT conditions of (P4), which
is omitted due to the page limit.

Lemma 5.2: The optimal offloading decisions in the
extended inter-user task dependency model follow the one-
climb policy.

Proof: We prove the one-climb policy by contradiction
based on the proof of Theorem 1. Suppose that the optimal
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Fig. 5. Extended inter-user task dependency model where the input of the task k at WD2 requires the final task outputs from the other WDs.

offloading strategy is to offload each WD’s data more than one
time, then we have

J∑
j=1

ηj(âj , f̂j , p̂j) <
J∑

j=1

ηj(ãj , f̃j , p̃j). (49)

According to the proof of Theorem 1, (38) and (39) also hold
in the multi-user task dependency model. We first consider
the optimal solution {âj, f̂j , p̂j} in the two-time offloading
scheme. According to Lemma 5.1, ∀j(j 	= 2), Twait

j ≤ Twait
2

holds at the optimum. Then, we switch the offloading decision
âj to ãj for WD j (j 	= 2) successively and keep the other
variables unchanged. Based on the analysis of (40) in the proof
of Theorem 1, we have

J∑
j=1

ηj(âj , f̂j , p̂j) >
∑
j �=2

ηj(ãj , f̂j , p̂j)+η2(â2, f̂2, p̂2). (50)

Then, we further switch the offloading decision â2 to ã2 for
WD2 and keep the other variables unchanged. Based on the
analysis of (41) in the proof of Theorem 1, we have

∑
j �=2

ηj(ãj , f̂j , p̂j)+η2(â2, f̂2, p̂2) >
J∑

j=1

ηj(ãj , f̂j , p̂j). (51)

Since the optimal {f̂j , p̂j} in a two-time offloading scheme is
a feasible solution in the one-climb offloading scheme of (P4),
we have

J∑
j=1

ηj(ãj , f̂j , p̂j) ≥
J∑

j=1

ηj(ãj , f̃j , p̃j). (52)

Therefore, by combining the above three inequalities, we have

J∑
j=1

ηj(âj , f̂j , p̂j) >
J∑

j=1

ηj(ãj , f̃j , p̃j), (53)

which contradicts the assumption. It completes the proof.
According to Lemma 5.2, the proposed reduced-complexity

Gibbs sampling algorithm can be adapted to solve the prob-
lem. Specifically, for the θ-th iteration, we first generate the
sampling set A′

a
(θ−1)
j

for each WD j based on the one-climb

policy. Then, the offloading decision a(θ)
j of each WD j is

sampled sequentially according to the probability distribution

Fig. 6. The considered topological call graph in simulation.

Λj(aj |a−j), which is similar as (46) and (47). We omit the
details here due to the page limit.

In this paper, we assume that the edge server is equipped
with ρ cores and each core is assigned to compute one task
with a fixed service rate fc. Since each WD has a sequence of
tasks to execute, there are at most J tasks executed at the edge
simultaneously. Therefore, the maximum acceptable number
of users is ρ and J ≤ ρ must hold.

VI. NUMERICAL RESULTS

In this section, we conduct numerical simulations to eval-
uate the performance of our optimal strategies. Consider an
example call graph in Fig. 6. The input and output data size
(KByte) of each task are shown in Fig. 6. As for the computing
workload, we assume that {Li,1} = [65.5 40.3 96.6] (Mcy-
cles) and {Li,2} = [70.8 95.3 86.4 18.6 158.6] (Mcycles).
We assume that the transmit power at the AP is fixed as 1 W
and the peak transmit power of each WD is 100 mW. Besides,
the edge server speed fc and the peak computational frequency
of each WD fpeak are equal to 1010 and 108 cycles/s, respec-
tively. We consider a commercial mobile device in practice
with the computing efficiency parameter κ = 10−26, which is
consistent with the measurements in [29].

For simplicity of illustration, we assume that the wireless
channel gains hi,j , gi,j follow the free-space path loss model

hi,j = gi,j = G

(
3 · 108

4πFcdj

)PL

, (54)

where G = 4.11 denotes the antenna gain, Fc = 915 MHz
denotes the carrier frequency, dj in meters denotes the distance
between the WD j and the AP, and PL = 3 denotes the path
loss exponent. In this case, the wireless channel gains are equal
for all the tasks at a WD. However, our proposed algorithms
are applicable to general cases with different hi,j , gi,j for
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Fig. 7. The tradeoff between the total execution time and energy consumption
of each WD when βT

2 varies.

different task i of WD j. The noise power σ2 = 10−10 W.
We set the bandwidth W = 2 MHz. Recall that the weights in
WD j are related by βE

j = 1−βT
j . In general, the parameters

chosen in the simulation are based on practical computing
models [29] and typical wireless networks [30].

A. Energy Efficiency and Delay Performance Evaluation

In Fig. 7, we study the performance tradeoff between energy
consumption and delay for the two WDs under different βT

1

and βT
2 . Here, we consider d1 = d2 = 15 m. Under each

particular βT
1 , it can be seen that with the increase of βT

2 ,
WD2 achieves lower execution delay but higher total energy
consumption. Similar performance tradeoff is also observed
for WD1. Moreover, we observe that the tradeoff curve of
WD1 converges to a point as βT

1 increases, which means
that for a large βT

1 , the optimal execution time and energy
consumption of WD1 remain constant with the increase of βT

2 .
It is due to the fact that with the increase of βT

1 , the WD1 not
only acts as a helper, but also focuses on minimizing its own
execution time.

Then, we show the ETC objective value achieved by differ-
ent methods when d1 and d2 varies, where we set βT

1 = 0.05
and βT

2 = 0.5. For performance comparison, we also consider
three suboptimal schemes as benchmarks. The first scheme is
referred to as all task offloading, where all the tasks in the two
WDs are offloaded to the edge. For the second scheme, all the
tasks of the two WDs are executed locally. Besides, we denote
independent optimization as the third scheme, where each
WD minimizes its own ETC and neglects the task dependency
between them.

In Fig. 8, we illustrate the impact of d1 on the total ETC,
where d2 is fixed as 10 m. Besides, Fig. 9 demonstrates the
total ETC when d2 varies with d1 = 10 m. The {Li,1}
and {Li,2} are uniformly generated from the range [10, 200]
(Mcycles). Each point in the figures is the average performance
of 20 independent simulations. From both figures, it can be
seen that the optimal ETC obtained by the proposed Gibbs
sampling algorithm is on top of each other with the optimal
one-climb policy based enumeration method. In addition, it is

Fig. 8. Total ETC versus d1 when d2 = 10 m.

Fig. 9. Total ETC versus d2 when d1 = 10 m.

observed from both Fig. 8 and Fig. 9 that the total ETC is
increasing as d1 or d2 increases for the proposed algorithm,
all-offloading scheme and independent optimization scheme.
As for the all-computing-locally scheme, higher total ETC is
achieved with the increase of d1, while the total ETC is more
stable when d2 increases. It is because in the all-computing-
locally scheme, the WD1 needs to upload its final result
to the AP and then, the AP forwards this information to
the WD2, as illustrated in Fig. 2 Case1. In this process,
increasing d1 leads to a higher total ETC. Besides, it is
observed that lower ETC is achieved by the proposed algo-
rithm compared to the three benchmarks, i.e., around 15.24%,
47.64% and 21.2% lower average ETC than the all-offloading,
all-computing-locally and independent optimization schemes
in Fig. 8, respectively. This suggests the benefits by adapting
joint optimization of the resource allocation and the offloading
decisions for both WDs. An interesting observation is that the
independent optimization scheme performs equally well as the
proposed optimal algorithm with larger d2 in Fig. 9. It is due
to the fact that Twait

1 < Twait
2 and λ∗ = 0 when d2 is large

in the proposed scheme. This implies that the optimizations
of the two WDs are practically decoupled.
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Fig. 10. Impact of k in topological call graphs (3, 5, k).

Fig. 11. Total ETC versus number of users.

In Fig. 10, we further study the impact of different task
dependency model (the call graph) to the system performance.
Specifically, given different βT

1 , Fig. 10 illustrates the variation
of the optimal energy and delay costs when the joint task index
k changes in the topological call graphs (3, 5, k). We observe
that with the increase of k, T1 becomes larger under a small βT

1

(e.g., βT
1 = 0.05 or 0.3), while T2 shows an opposite trend.

Intuitively, this is because when k is small, e.g., k = 1 or
k = 2, the inter-user task dependency becomes very stringent,
such that WD1 needs to quickly finish all its 3 tasks to meet
the finish time of the first k tasks of WD2. At the meantime,
WD2 only needs to slow down its computation to “wait” for
WD1’s computation results for reduced energy consumption.
Overall, this leads to a larger T1 and smaller T2 when
k increases. Besides, when βT

1 becomes larger, WD1 pays
less emphasis on minimizing its computation delay to meet
the computation time of the k-th task at WD2. In this case,
the computations at the two users are practically decoupled
and indeed optimized separately. Therefore, the computation
delays at both users are insensitive to the variation of call
graph topology, i.e., change of k.

In Fig. 11, we illustrate the ETC performance when
extending the proposed inter-user task dependency model to

Fig. 12. Obtained total ETC and number of iterations for different cooling
rate α.

the multi-user case, where the distance from each WD to the
AP follows a uniform distribution between 10 m and 30 m.
Each point in the figure is the average performance of 20 inde-
pendent distance realizations. Based on the topological call
graph in two-user case as shown in Fig. 6, we assume that
{Li,3} = [50.5 45.3 86.6] (Mcycles) and {Oi,3, i = 0, 1, 2,
3} = [1400 1200 1500 1300] (KByte) for WD3,
{Li,4} = [65.5 50.3 75.6] (Mcycles) and {Oi,4, i =
0, 1, 2, 3} = [1500 1400 1000 1500] (KByte) for WD4,
{Li,5} = [55.5 42.3 90.6] (Mcycles) and {Oi,5, i =
0, 1, 2, 3} = [1600 1500 1300 1700] (KByte) for WD5
and {Li,6} = [58.5 47.3 82.6] (Mcycles) and {Oi,6,
i = 0, 1, 2, 3} = [1200 1300 1600 1600] (KByte) for WD6.
The input of the 4-th task at WD2 requires the final task
outputs from the other WDs. It is observed that the proposed
optimal algorithm outperforms the independent optimization
scheme. Specifically, the performance improvement of our
proposed algorithm becomes larger when the number of users
increases, e.g., from 1.6588 to 3.3861 when user number
increases from 2 to 6. It is because the task dependency
becomes stronger as the number of users increases, which
leads to larger performance gain by considering inter-user
task dependency in the optimization.

B. Complexity of the Proposed Gibbs Sampling Algorithm

In Fig. 12, we plot the obtained total ETC versus the number
of iterations, where the initial T (1) = 1, d1 = d2 = 10,
βT

1 = 0 and βT
2 = 0.5. It can be seen that the algorithm

converges faster with a lower cooling rate. This is because
when the temperature T is low, the offloading decision that
yields a smaller objective is more likely to be picked, leading
to lower fluctuation.

Moreover, in Fig. 13, we compare the complexity among
the four algorithms under different topological call graphs
(M,N, k), where d1 = d2 = 10, βT

1 = 0 and βT
2 = 0.5.

The general Gibbs sampling algorithm is considered as a
benchmark, where the sampling set is generated without one-
climb policy constraint in each iteration. We observe that the
proposed one-climb policy based Gibbs sampling algorithm
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Fig. 13. Runtime versus different topological call graphs (M, N, k) in four
algorithms.

achieves lower runtime compared with the general Gibbs
sampling, one-climb policy based search and the brute-force
schemes, which indicates the advantages of applying one-
climb policy and Gibbs sampling method. Specifically, as the
call graph is extended, the brute-force search scheme shows
an exponential complexity growth, while the one climb based
search method solves the problem in polynomial time. As for
the general Gibbs sampling scheme, the runtime is increasing
linearly as the size of call graph increases. However, the one
climb based Gibbs sampling algorithm is insensitive to the size
of call graph and can achieve around 46.68% lower average
runtime than the general Gibbs sampling method in Fig. 13.

VII. CONCLUSION AND FUTURE WORK

This paper has studied the impact of inter-user task depen-
dency on the task offloading decisions and resource allocation
in a two-user MEC network. We proposed efficient algo-
rithms to optimize the resource allocation and task offloading
decisions, with the goal of minimizing the weighted sum
of the WDs’ energy consumption and task execution time.
Besides, we proved that the optimal offloading decisions sat-
isfy an one-climb policy, based on which a reduced-complexity
Gibbs sampling algorithm was proposed to obtain the optimal
offloading decisions. Simulation results demonstrated that the
proposed method can achieve significant performance gain
compared to the benchmarks, which indicated the advantage of
considering inter-user task dependency. Meanwhile, the com-
plexity of the proposed Gibbs sampling algorithm was low and
insensitive to the call graph size.

Finally, we conclude the paper with some interesting future
directions. First, we assumed in this paper that each WD is
allocated with an orthogonal channel and the CPU frequency
of the edge server is fixed. The consideration of both band-
width and computing resources competitions is needed when
we extend our work to a large-size network. In addition, it is
interesting to consider more realistic knowledge of channel
conditions, where an online optimization algorithm needs to
be derived. Besides, there are many other task dependency

models and for other more complex models, we can further
study them in our future works. Moreover, although the
proposed one-climb policy based Gibbs sampling algorithm
greatly reduces the computational time compared with the
traditional Gibbs sampling algorithm, it may still take a large
number of iterations to solve the combinatorial optimization
problem. Once the channel conditions change, we need to re-
solve the problem. One possible way to address this challenge
is to explore the recent development of artificial intelligent
algorithms. For example, we can apply the deep reinforcement
learning technique to quickly find a mapping between the time-
varying channel gains and optimal offloading decisions.

APPENDIX A
PROOF OF PROPOSITION 3.1

For the WD1, the derivative of L of (25) with respect
to τ l

i,1 can be expressed as

∂L

∂τ l
i,1

= βT
1 − 2κβE

1 (Li,1)3

(τ l
i,1)3

+ λ,

where ∂L
∂τ l

i,1
is a monotonously increasing function with

τ l
i,1 ∈ [ Li,1

fpeak
,+∞). Thus, if ∂L

∂τ l
i,1
|
τ l

i,1=
Li,1

fpeak

> 0, we have

f∗
i,1 = fpeak. Otherwise, we have

τ l
i,1 = Li,1

3

√
2κβE

1

βT
1 + λ

⇒ f∗
i,1 =

Li,1

τ l
i,1

= 3

√
βT

1 + λ∗

2κβE
1

.

Thus,

f∗
i,1 = min

{
3

√
βT

1 + λ∗

2κβE
1

, fpeak

}
.

As for the WD2, the proof is similar as that in the WD1 and
we omit the details here.

APPENDIX B
PROOF OF PROPOSITION 3.2

In the following, we show the case when i ≤ M in
the WD1. The proof for the other cases is similar and we
omit the details here.

The derivative of L of (25) with respect to τu
i,1 is expressed

as

∂L

∂τu
i,1

= βT
1 + βE

1

[
1
hi,1

f(
Oi−1,1

τu
i,1

) +
τu
i,1

hi,1
f ′(

Oi−1,1

τu
i,1

)

]
+ λ

= βT
1 + βE

1

[
σ2

hi,1
2

Oi−1,1
Wτu

i,1 (1−Oi−1,1

Wτu
i,1

ln 2) − σ2

hi,1

]
+λ.

Next, we can further have the second-order derivative of (25)
with respect to τu

i,1 as

∂2L

∂(τu
i,1)2

= βE
1

σ2

hi,1

(Oi−1,1)2

W 2(τu
i,1)3

2
Oi−1,1
Wτu

i,1 (ln 2)2 > 0,

which indicates that ∂L
∂τu

i,1
is a monotonously increasing

function with τu
i,1 ∈ [ Oi−1,1

W log2(1+
Ppeakhi,1

σ2 )
,+∞). Let g =

∂L
∂τu

i,1
|
τu

i,1=
Oi−1,1

W log2(1+
Ppeakhi,1

σ2 )

, we have ∂L
∂τu

i,1
∈ [g, βT

1 + λ].
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If g > 0, i.e., hi,1 < σ2

Ppeak
[ A1
−W(−A1e−A1 )

− 1], L is a
monotonously increasing function with respect to τu

i,1. Thus,
we have (τu

i,1)
∗ = Oi−1,1

W log2(1+
Ppeakhi,1

σ2 )
, which means that

the optimal transmit power of the WD1 in this case is
p∗i,1 = Ppeak. Otherwise, by equating ∂L

∂τu
i,1

= 0, we have

p∗i,1 = σ2

hi,1

[
B1

W(B1e−1) − 1
]
.
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