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Offloading and Resource Allocation With General
Task Graph in Mobile Edge Computing: A Deep
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Abstract— In this paper, we consider a mobile-edge computing
(MEC) system, where an access point (AP) assists a mobile
device (MD) to execute an application consisting of multiple
tasks following a general task call graph. The objective is to
jointly determine the offloading decision of each task and the
resource allocation (e.g., CPU computing power) under time-
varying wireless fading channels and stochastic edge computing
capability, so that the energy-time cost (ETC) of the MD is
minimized. Solving the problem is particularly hard due to
the combinatorial offloading decisions and the strong coupling
among task executions under the general dependency model.
Conventional numerical optimization methods are inefficient to
solve such a problem, especially when the problem size is large.
To address the issue, we propose a deep reinforcement learning
(DRL) framework based on the actor-critic learning structure.
In particular, the actor network utilizes a DNN to learn the
optimal mapping from the input states (i.e., wireless channel
gains and edge CPU frequency) to the binary offloading decision
of each task. Meanwhile, by analyzing the structure of the optimal
solution, we derive a low-complexity algorithm for the critic net-
work to quickly evaluate the ETC performance of the offloading
decisions output by the actor network. With the low-complexity
critic network, we can quickly select the best offloading action
and subsequently store the state-action pair in an experience
replay memory as the training dataset to continuously improve
the action generation DNN. To further reduce the complexity,
we show that the optimal offloading decision exhibits an one-
climb structure, which can be utilized to significantly reduce the
search space of action generation. Numerical results show that
for various types of task graphs, the proposed algorithm achieves
up to 99.1% of the optimal performance while significantly

Manuscript received October 15, 2019; revised January 18, 2020 and
March 10, 2020; accepted April 24, 2020. Date of publication May 14,
2020; date of current version August 12, 2020. This work was supported
in part by the National Natural Science Foundation of China under Project
61871271, in part by the General Research Fund established by the Research
Grants Council of Hong Kong under Project 14208017, in part by the
Guangdong Province Pearl River Scholar Funding Scheme 2018 under
Project 308/00003704, in part by the Foundation of Shenzhen City under
Project JCYJ20170818101824392 and Project JCYJ20190808120415286, and
in part by the Science and Technology Innovation Commission of Shen-
zhen under Project 827/000212. This article will be presented in part at
the IEEE International Conference on Communications, Dublin, Ireland,
June 7–11, 2020 [1]. The associate editor coordinating the review of this
article and approving it for publication was C. Huang. (Corresponding author:
Suzhi Bi.)

Jia Yan and Ying-Jun Angela Zhang are with the Department of Information
Engineering, The Chinese University of Hong Kong, Hong Kong (e-mail:
yj117@ie.cuhk.edu.hk; yjzhang77@ieee.org).

Suzhi Bi is with the College of Electronic and Information Engineering,
Shenzhen University, Shenzhen 518060, China (e-mail: bsz@szu.edu.cn).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TWC.2020.2993071

reducing the computational complexity compared to the existing
optimization methods.

Index Terms— Mobile edge computing, optimization algorithm,
deep reinforcement learning, resource allocation.

I. INTRODUCTION

RECENT years have witnessed explosive growth of Inter-
net of Things (IoT) as a way to connect tens of billions

of resource-limited wireless devices, such as sensors, mobile
devices (MDs) and wearable devices, to Internet through the
cellular networks. Due to small physical sizes and stringent
production costs constraints, IoT devices often suffer from lim-
ited computation capabilities and finite battery lives. Perceived
as a promising solution, mobile edge computing (MEC) [2],
[3] has attracted significant attention. With MEC, computation-
ally intensive tasks can be offloaded to nearby servers located
at the edges of wireless networks. This efficiently overcomes
the drawbacks of long backhaul latency and high overhead
compared to traditional mobile cloud computing.

Typically, there are two computation task offloading models
for MEC [2]: one is referred to as binary offloading, and the
other is partial offloading. For the binary offloading model,
each task is either executed locally or offloaded to the MEC
server as a whole [4]–[9]. As for partial offloading, tasks
can be arbitrarily divided into two parts that are executed
by the device and the edge server, respectively [10], [11].
Nevertheless, in practice, a mobile application usually has
multiple components and the dependency among them can-
not be ignored since the outputs of some components are
the inputs of others. In this regard, task call graph [12] is
proposed to model the sophisticated inter-dependency among
different components in a mobile application. In this paper,
we consider computation offloading with a general task call
graph.

Due to the random variation of wireless channels, it is not
always advantageous to offload all the tasks for edge execu-
tion. Instead, offloading computation tasks in an opportunistic
manner considering the time-varying channel condition has
shown significant performance advantage [4]–[11]. Due to the
mutual coupling constraints in a task call graph, offloading
policy design becomes much challenging [13]–[18]. Specif-
ically, [13] considered a sequential task graph and derived
an optimal one-climb policy, where the execution migrates
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only at most once between the MD and the cloud server. This
work was extended to a general task graph case in [14], where
authors applied the partial critical path analysis for the general
task graph scheduling. In [15], the offloading problem in a
general task graph was formulated as a linear programming
problem through convex relaxation. Reference [16] modeled
the task scheduling problem in a general task graph as an
energy consumption minimization problem that is solved by a
genetic algorithm. Note that general task graphs are considered
much harder to deal with compared to other task graphs with
special structures (i.e., sequential task graph), since it is hard
to explore and derive the offloading properties (i.e., one-climb
policy in the sequential task graph) with the general and
complicated coupling among tasks.

On the other hand, recent work has considered joint
optimization of radio/computing resource allocation and com-
putation offloading. In particular, [17] studied an energy-
efficiency cost minimization problem by incorporating CPU
frequency control and transmit power allocation in the
MEC offloading decision. Reference [18] considered inter-
user task dependency and proposed a reduced-complexity
Gibbs sampling algorithm to obtain the optimal offloading
decisions.

The existing work on task offloading with general task
graph adopts either convex relaxation methods (e.g., in [15],
[17]) or heuristic local search methods (e.g., in [13], [14],
[16], [18]). However, both methods are likely to get stuck
in a local optimal solution that does not guarantee good
performance. Moreover, the optimization problems need to be
re-solved once the wireless channel conditions change or the
available computing power of the edge server changes due
to the variation of demands by background applications. The
frequent re-calculation of offloading decisions renders the
existing methods impractical.

In this paper, we endeavor to design an efficient optimal
computation offloading algorithm in an MEC system with a
general task graph, so that the optimal decision swiftly adapts
to the time-varying wireless channels and available edge
computing power with very low computational complexity.
In particular, we propose a deep reinforcement learning (DRL)
framework. The key idea of DRL is to utilize the deep neural
networks (DNNs) to learn the optimal mapping between the
state space and the action space. There exists several work
on DRL-based offloading methods for MEC systems [19]–
[21]. In [19], a deep Q-network (DQN) based offloading policy
was proposed to optimize the computational performance in
the MEC system with energy harvesting. When tasks arrive
randomly, [20] proposed DQN to learn the optimal offloading
decisions without a priori knowledge of network dynamics.
To tackle the curse of dimensionality problem in DQN-based
methods, [21] proposed a novel DRL framework to achieve
near-optimal offloading actions by considering only a small
subset of candidate offloading actions in each iteration. Notice
that [19]–[21] all assume independent tasks among multiple
users. Very recently, considering a general task dependency,
[22] proposed a recurrent neural network (RNN) based rein-
forcement learning method for the computation offloading
problem. However, it neglected the system dynamics, such as

wireless fading channels and time-varying edge server CPU
frequency.

We consider an MEC system with a single access point (AP)
and a MD as shown in Fig. 1. The MD has an application with
a general task topology to execute under time-varying wireless
fading channels and edge server CPU frequency. In particular,
we propose a DRL framework to minimize the weighted sum
of task execution time and energy consumption of the MD.
The main contributions are concluded as follows:

• We formulate a mixed integer optimization problem to
jointly optimize the offloading decisions and local CPU
frequencies of the MD to minimize the computation delay
and energy consumption. The problem is challenging
because of the combinatorial nature of the offloading
decisions and the strong coupling among task executions
under general dependency model.

• In order to solve the combinatorial optimization problem
efficiently, we propose a DRL framework based on the
actor-critic learning structure, where we train a DNN in
the actor network periodically from the past experiences
to learn the optimal mapping between the states (i.e.,
wireless channels and edge CPU frequency) and actions
(i.e., offloading decisions). Within the actor network,
we devise a novel Gaussian noise-added order-preserving
action generation method to balance the diversity and
complexity in generating candidate binary offloading
actions under a high-dimensional action space.

• For the critic network, we simplify the problem according
to the total loop-free paths in the general task graph and
derive closed-form solution for the optimal local CPU
frequencies. Based on this, we propose an efficient algo-
rithm. As such, unlike traditional actor-critic networks
that utilize a DNN to predict the values of the actions in
the critic network, our analysis allows fast and accurate
calculation of the performance of each action generated
by the actor network. In this way, the complexity and
convergence of the actor-critic based DRL are greatly
improved.

• To further speed up the computation of the proposed DRL
framework, we propose a heuristics where the offloading
decisions are limited to the ones that follow the one-
climb offloading policy. The heuristics greatly reduces
the number of performance evaluations for the actions
in the critic network. The optimality of the one-climb
policy is analyzed and its advantageous performance over
conventional action generation method is verified through
simulations.

Numerical results show that for various types of general
task graphs, the proposed DRL-based algorithm achieves up
to 99.1% of the optimal energy and time cost. Meanwhile,
our proposed method only takes around 1 second to gen-
erate an offloading action, which is more than one order
of magnitude faster than the other representative benchmark
methods. In this paper, we formulate the joint optimization of
offloading and resource allocation with general task graph in
the MEC as a mixed integer non-linear programming (MINLP)
problem, which is hard to solve with conventional optimization
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algorithms under time-varying wireless channels and stochas-
tic edge computing capability. By exploring the special struc-
ture of the considered MINLP problem, we observe that for
any given integer variables (offloading decisions), the remain-
ing problem is convex. Therefore, the main difficulty lies in
finding the optimal integer offloading decisions. With such
property, we propose the actor-critic learning structure based
DRL algorithm, where the actor network generates a set of
integer offloading actions according to the time-varying para-
meters and the critic network scores each action output from
the actor network by convex optimization. Then, we utilize
the generated action-score pairs to make current offloading
decision and improve the performance of the actor network.
It is worth mentioning that the key target of the critic is for
evaluating the action quality, regardless of using a general
neural network or a specialized algorithm [23]. In this paper,
as one of the major contributions, we propose an efficient
low-complexity algorithm in the critic network to evaluate
the actions generated from the actor network, which greatly
reduces the training cost of the critic DNN and increases the
accuracy of action evaluation.

The rest of the paper is organized as follows. In Section II,
we present the system model and problem formulation. The
optimal local CPU frequencies under fixed offloading deci-
sions are studied in Section III. We introduce the detailed
design for the DRL framework in Section IV. In Section V,
simulation results are described. Finally, we conclude the
paper in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider an MEC system with one
AP and one MD. The AP is the gateway of the edge cloud
and has stable power supply. The MD has a computationally
intensive mobile application consisting of M dependent tasks.
The input-output dependency of the tasks is represented by a
directed acyclic task graph G = (M, E). As shown in Fig. 2,
each vertex in G represents a task i and the associated
parameter Li indicates the computing workload in terms of
the total number of CPU cycles required for accomplishing
the task. Besides, each edge (k, i) ∈ E in G represents
that a precedent task k must be completed before starting to
execute task i. Additionally, we denote the size of data in
bits transferred from task k to i by Ok,i. For simplicity of
exposition, we introduce two virtual tasks 0 and M + 1 as
the entry and exit tasks, respectively. Specifically, we have
L0 = LM+1 = 0. By forcing the two virtual tasks to be
executed locally, we ensure that the application is initiated
and terminated at the MD side. We denote the set of tasks in
the task graph G as M = {0, 1, . . . ,M + 1}.

Define an indicator variable ai ∈ {0, 1} such that ai = 0
means that task i is executed locally and ai = 1 means that
the MD offloads the computation of task i to the edge side.
Recall that the two virtual tasks 0 and M+1 must be executed
locally. That is, a0 = aM+1 = 0.

In addition, we assume that the MD is allocated a dedicated
spectral resource block throughout its transmission, which can
support concurrent transmissions for task offloading and down-
loading. We denote by huk,i and hdk,i the channel gains when

Fig. 1. System model.

Fig. 2. The considered task graph.

offloading and downloading the task data Ok,i, respectively.
Besides, we assume additive white Gaussian noise (AWGN)
with zero mean and equal variance σ2 at the receiver for all
the tasks.

To characterize the task execution time and energy con-
sumption for local and edge computing, respectively, we first
define the finish time and ready time of each task.

Definition 1 (Finish Time): The finish time of task i is
the moment when all the workload Li has been executed.
We denote FT li and FT ci as the finish time of task i when it
is executed locally and at the edge server, respectively.

Definition 2 (Ready Time): The ready time of a task is the
earliest time when the task has received all the necessary input
data to commence the task computation. For instance, in Fig. 2,
the ready time of the fifth task is the time when both the
input data streams from the first and second tasks have arrived.
We denote the ready time of task i when computing locally
and at the edge server as RT li and RT ci , respectively.

A. Local Computing

We assume that the MD is equipped with a ρl-core CPU,
where each CPU core can execute only one task at a time.
That is, the MD can execute in total ρl tasks simultaneously.
Suppose that task i is computed locally. We denote the local
CPU frequency for computing the task as f li , which is upper
bounded by f li ≤ fpeak. Thus, the local execution time of task
i is given by

τ li =
Li

f li
, (1)

and the corresponding energy consumption is [2]

eli = κLi(f li )
2 = κ

L3
i

(τ li )2
, (2)

where κ is the effective switched capacitance depending on
the chip architecture. According to the circuit theory [24],

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on September 06,2020 at 07:53:49 UTC from IEEE Xplore.  Restrictions apply. 



YAN et al.: OFFLOADING AND RESOURCE ALLOCATION WITH GENERAL TASK GRAPH IN MEC: A DRL APPROACH 5407

the power consumption of the CPU is approximately pro-
portional to the product of V 2

cirf
l
i , where Vcir is the circuit

supplied voltage. Besides, Vcir is approximately linear propor-
tional to the CPU frequency f li when the CPU works at the
low voltage limits [25]. Therefore, the energy consumption per
CPU cycle is given by κ(f li )

2. It is worth mentioning that for
the two virtual tasks 0 and M + 1, we have τ l0 = τ lM+1 = 0
and el0 = elM+1 = 0.

If a task k preceding task i is executed at the edge
server, then the output data Ok,i must be downloaded to the
MD before task i can be executed locally. Denote the fixed
downlink transmit power of the AP by PAP . Then, according
to the Shannon-Hartley theorem, the downlink data rate from
the AP to the MD is

Rdk,i = W log2

�
1 +

PAPh
d
k,i

σ2

�
, (3)

where W denotes the fixed bandwidth of the orthogonal
channels allocated to the MD. The corresponding downlink
transmission time for sending the data Ok,i, (k, i) ∈ E , is

τdk,i =
Ok,i

Rdk,i
. (4)

As such, the ready time RT li of task i is given by

RT li = max
k∈pred(i)

�
(1 − ak)FT lk + ak

�
FT ck + τdk,i

��
, (5)

where pred(i) denotes the set of immediate predecessors of
task i. Specifically, if ak = 1 for a task k ∈ pred(i), the time
until its output data is available at the MD for the execution
of task i is equal to its finish time FT ck at the edge side plus
the downlink transmission time τdk,i. Otherwise, if ak = 0,
the time until its output data is available at the MD is equal
to its local finish time FT lk. When all needed data is available
at the ready time RT li , the MD locally computes task i with
the local execution time τ li in (1), so that the finish time of
task i becomes

FT li = RT li + τ li . (6)

B. Edge Computing

We denote the fixed transmit power of the MD by PMD .
Then, the uplink data rate for offloading the data Ok,i, (k, i) ∈
E , to the AP is

Ruk,i = W log2

�
1 +

PMDh
u
k,i

σ2

	
, (7)

and the corresponding uplink transmission time is

τuk,i =
Ok,i
Ruk,i

. (8)

The transmission energy consumption is

euk,i = τuk,iPMD. (9)

We assume that the edge server has ρc cores and can
compute ρc tasks in parallel. The execution time of task i
on the AP is given by

τci =
Li
f c
, (10)

where f c is the fixed service rate of each CPU core. Similarly,
we can calculate the ready time of task i executed at the edge
server as

RT ci = max
k∈pred(i)

�
(1 − ak)

�
FT lk + τuk,i

�
+ akFT

c
k

�
, (11)

and its finish time is

FT ci = RT ci + τci . (12)

C. Problem Formulation

We assume that both the MD and MEC server have a
lot more CPU cores than needed to execute the possibly
concurrent tasks in the considered mobile application. As such,
we can safely set ρl = ρc = ∞. Besides, it is assumed that the
number of available channels is sufficiently large to execute
the possibly concurrent data transmissions in the task graph.

From the above discussion, the total time to complete the
all tasks is equal to the local finish time of the auxiliary exit
task M + 1, i.e., FT lM+1. Besides, we can calculate the total
energy consumption of the MD by

E =
M

i=1

(1 − ai)eli +
M

i=1



k∈pred(i)

(1 − ak)aieuk,i, (13)

which consists of energy consumed on local computation and
task offloading.

In this paper, we consider the energy-time cost (ETC) as
the performance metric, which is defined as the weighted sum
of the total energy consumption and execution time, i.e.,

η = βeE + βtFT
l
M+1, (14)

where 0 < βe < 1 and 0 < βt < 1 denote the weights of
energy consumption and computation completion time of the
MD, respectively. It is assumed that the weights are related by
βt = 1 − βe.

Evidently, a higher CPU frequency leads to shorter task
execution time. Meanwhile, according to (2), the energy
consumption per CPU cycle is a quadratic function of the
CPU frequency, thus the energy consumption increases with
the CPU frequency for executing a task. Because the AP has
stable power supply, it can operate with a fixed maximum
frequency f c to minimize the execution delay. However, since
the MD is often energy-constrained, we can apply dynamic
voltage and frequency scaling (DVFS) technique to tune the
local CPU frequency for balancing the performance between
energy consumption and execution time. Denoting a � {ai}
and f � {f li}, i ∈ M, we aim to minimize the ETC of the
MD subject to the peak CPU frequency constraint of the MD,
i.e.,

(P1) min
(a,f)

η,

s.t. 0 ≤ f li ≤ fpeak,

ai ∈ {0, 1}, ∀i ∈ M, (15)

where we assume f c > fpeak in this paper. We consider the
weighted-sum approach [9,17,18] for a general multi-objective
optimization problem. According to the Proposition 3.9 of
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[26], for any given positive weights, we can reach an effi-
cient solution of the multi-objective optimization problem by
solving Problem (P1). A weakly efficient solution will be
obtained if any of the weights is zero. Besides, in order to meet
user-specific demands, we allow the MD to choose different
weights. For instance, the MD with low battery energy prefers
a larger βe for energy saving, while for the delay-sensitive MD,
a larger βt will be chosen to reduce the execution time.

In general, (P1) is non-convex due to the binary variables
a and the recursive structure of FT lM+1. In the following
section, we first simplify (P1) by exploiting the property of
the total task completion time FT lM+1. Then, we propose an
efficient method to obtain the optimal CPU frequencies with
a given a.

III. OPTIMAL RESOURCE ALLOCATION UNDER FIXED

OFFLOADING DECISIONS

A. Problem (P1) Simplification

We denote a path o as an ordered sequence of task indices
Ψ(o) = {ko0, ko1 , . . . , kom, . . . , komo , komo+1}, ko0 = 0, komo+1 =
M + 1, that pass through the general task graph G from the
entry task 0 to the exit task M + 1. Here, mo is the total
number of real tasks in path o. For instance, {0, 1, 5, 8, 10}
is a path in Fig. 2. There are three real tasks {1, 5, 8} in the
path. Besides, we denote the set of all loop-free paths as O,
which can be obtained by running the K-shortest path routing
algorithm on G. Likewise, we denote by O = |O| the total
number of paths. Let To denote the total execution time in the
o-th path excluding the waiting time for the data inputs from
the other paths. Then, we have

To =



kom∈Ψ(o)

[(1 − akom)τ lkom + akomτ
c
kom

]

+
komo+1

kom=ko1

�
akom(1 − akom−1

)τukom−1,k
o
m

+(1 − akom)akom−1
τdkom−1,k

o
m

�
, (16)

which consists of the total computation and communication
delay in path o.

To simplify Problem (P1), we first have the following lemma
on FT lM+1.

Lemma 3.1: FT lM+1 = max{T1, T2, . . . , To, . . . , TO} holds
given any (a, f).

Proof: Please refer to Appendix A.
Lemma 3.1 indicates that the final completion time is equal

to the largest total execution time of all the paths in G. Note
that although To does not include the time spent on waiting
for the task input data from other paths, the largest To among
all paths is the final completion time.

Due to the one-to-one mapping between f li and τ li in
(1), it is equivalent to optimize (P1) over the time allo-
cation τ li . By introducing an auxiliary variable Tmax =
max{T1, T2, . . . , To, . . . , TO}, (P1) can be equivalently

expressed as

(P2) min
(a,{τ li},Tmax)

βeE + βtTmax,

s.t. Tmax ≥ T1, Tmax ≥ T2,

. . . , Tmax ≥ TO,

0 ≤ Li

τ li
≤ fpeak,

ai ∈ {0, 1}, ∀i ∈ M. (17)

Notice that (P2) is non-convex in general due to the binary
variables a. However, for any given a, the remaining opti-
mization over {τ li} is a convex problem. In the following,
we assume a fixed offloading decision a and derive an efficient
algorithm to obtain the optimal (τ li )

∗, or equivalently the
optimal local CPU frequencies (f li )

∗.

B. Optimal Local CPU Frequencies

Suppose that a is given. We express a partial Lagrangian of
Problem (P2) as

L({τ li}, Tmax, λ1, . . . , λO) = βeE + βtTmax

+
O

o=1

λo(To − Tmax), (18)

where {λo ≥ 0, o ∈ O} denotes the dual variables associated
with the corresponding constraints. Let {λ∗o, o ∈ O} denote
the optimal dual variables. Then, we derive the closed-form
expressions for the optimal local CPU frequencies as follows.

Proposition 3.1: ∀i with ai = 0, by denoting the index
set of the paths that contain task i as Υ(i), the optimal CPU
frequencies at the MD satisfy

(f li )
∗ = min

⎧⎨
⎩ 3

��
o∈Υ(i) λ

∗
o

2κβe
, fpeak

⎫⎬
⎭ . (19)

Proof: Please refer to Appendix B.
From Proposition 3.1, we observe that the optimal (f li )

∗ is
determined by the dual variables λ∗o corresponding to all the
paths containing task i. Besides, increasing βe leads to a lower
optimal (f li )

∗ for energy saving.
Corollary 3.1: The summation of the optimal dual variables

over all paths is equal to the constant βt. That is,

o∈O

λ∗o = βt. (20)

Then, if Υ(i) = O, according to the Proposition 3.1, the opti-
mal local CPU frequency for task i is

(f li )
∗ = min

�
3

�
βt

2κβe
, fpeak

�
, (21)

which is a constant regardless of the values of λ∗o, o ∈ O.
Proof: Please refer to Appendix C.

The above corollary indicates that the optimal (f li )
∗ is

a constant when the i-th task is included in all the paths,
i.e., Υ(i) = O.

Based on Proposition 3.1 and Corollary 3.1, we can apply
the projected subgradient method [27] to search for the optimal
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Fig. 3. The schematics of the deep reinforcement learning framework.

dual variables {λ∗o, o ∈ O}. Specifically, we initialize {λ(0)
o ≥

0, o ∈ O} satisfying (20). In the ψ-th iteration, we first
calculate To, ∀o ∈ O, using (16) and (19) and set Tmax =
max{T1, . . . , TO}. Then, the dual variables are updated to
{λ̂(ψ)

o , o ∈ O} by using subgradients (To − Tmax), ∀o ∈ O,
i.e.,

λ̂(ψ)
o = λ(ψ−1)

o − 
(To − Tmax), (22)

where 
 is a small learning rate. In order to guarantee the
feasibility of dual variables, we need to project {λ̂(ψ)

o , o ∈ O}
to the feasible region given in (20). The projection is calculated
from the following convex problem,

min
{λ(ψ)
o }

�

o∈O

(λ(ψ)
o − λ̂

(ψ)
o )2,

s.t.


o∈O

λ(ψ)
o = βt,

λ(ψ)
o ≥ 0, ∀o ∈ O, (23)

which can be efficiently solved by general convex optimization
techniques, e.g., interior point method [27]. After updating
the dual variables, we can further obtain the updated optimal
local CPU frequencies. Such iteration proceeds until a stopping
criterion is met. The pseudo-code of the method is shown in
Algorithm 1.

IV. DEEP REINFORCEMENT LEARNING BASED TASK

OFFLOADING

In the last section, we efficiently obtain the optimal f given
the offloading decision a. Intuitively, we can enumerate all
2M feasible a and choose the optimal one that achieves the
minimum objective of (P2). However, such brute-force search
is computationally prohibitive, especially when the problem
needs to be frequently re-solved with time-varying channel
gains and available server computing power. Besides, other
searching based methods, such as branch-and-bound and Gibbs
sampling algorithms, are also time consuming when M is
large.

Algorithm 1 Optimal algorithm for (P2) under fixed offloading
decision

1: initialize {λ(0)
o ≥ 0} satisfying (20) and set ψ = 0.

2: repeat
3: Compute To, ∀o ∈ O, using (16) and (19) with given

{λ(ψ)
o }.

4: Set Tmax = max{T1, . . . , TO}.
5: Update {λ(ψ)

o } to {λ̂(ψ+1)
o } using (22).

6: Project {λ̂(ψ+1)
o } to the feasible region by solving Pro-

belm (23) and set ψ = ψ + 1.
7: until {λo} converge to a prescribed accuracy.
8: Obtain {(f li )∗} by (19).

In this section, we propose a DRL-based algorithm to solve
the joint optimization under time-varying channel gains and
CPU frequency at the edge server. Our goal is to derive
an offloading decision policy π that can quickly predict an
optimal offloading action a∗ ∈ {0, 1}M of (P2) once the
channel gain h = {huk,i, hdk,i, (k, i) ∈ E} and the CPU
frequency f c at the edge server are revealed at the beginning
of the execution of the application (task graph). The offloading
decision policy is denoted as

π : {h, f c} �→ a∗. (24)

The algorithm structure is illustrated in Fig. 3. There are
two stages in the DRL-based offloading algorithm: one is
referred to as the actor-critic network based offloading action
generation, and the other is offloading policy update, which are
detailed as follows. Furthermore, we propose the one-climb
policy to speed up the learning process.

A. Actor-Critic Network Based Offloading Action Generation

1) Actor Network: The offloading action is generated based
on a DNN. We denote the embedded parameters of the DNN
at the t-th epoch as θt, t = 1, 2, . . ., where θ1 is randomly
initialized following a zero-mean normal distribution. At the t-
th epoch, we take the channel gain ht and edge CPU frequency
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Fig. 4. GNOP quantization method.

f ct as the input of the DNN. Accordingly, the DNN outputs a
relaxed offloading action āt, which is denoted by a mapping
gθt , i.e.,

āt = gθt(ht, f
c
t ), (25)

where āt = {āt,i ∈ [0, 1], i = 1, . . . ,M}, and the āt,i denotes
the i-th entry of āt.

Notice that each entry of āt is a continuous value between
0 and 1. To generate a feasible binary offloading decision,
we first quantize āt into B candidate binary offloading actions.
Then, the critic network will evaluate the performance of the
B candidate actions, and the one with the lowest ETC will
be selected as the output solution. Noticeably, for a good
quantization method, we only need to generate few candidate
actions to reduce the computational complexity. Meanwhile,
the quantized actions based on the relaxed action should
contain sufficient diversity to yield a lower ETC. In this
paper, we propose a Gaussian noise-added order-preserving
(GNOP) quantization method as shown in Fig. 4. We define
the quantization function as

GB : ā �→ Φt = {ab|ab ∈ {0, 1}M , b = 1, . . . , B}, (26)

where Φt is the generated candidate action set in the t-th
epoch.

Order-preserving quantization method was originally intro-
duced to explore the output of the DNN in [21]. The key
idea is to preserve the ordering of all the entries in a vec-
tor before and after quantization. In our proposed GNOP
method, the first B/2 actions are generated by traditional
order-preserving method, where we assume that B is an even
number without loss of generality. Specifically, suppose that
the output offloading action is āt. The generation rule for
{ab, b = 1, . . . , B/2} in the order-preserving method is shown
as follow.

First, we obtain the offloading decision a1 as

a1,i =

�
1, āt,i > 0.5,
0, āt,i ≤ 0.5,

(27)

for i = 1, . . . ,M . For the other B/2 − 1 offloading actions,
we first order the entries of āt according to their distances to
0.5, i.e., |āt,(1) − 0.5| ≤ |āt,(2) − 0.5| ≤ . . . ≤ |āt,(i) − 0.5| ≤
. . . ≤ |āt,(M) − 0.5|, where āt,(i) is denoted as the i-th order
entry of āt. Then, the b-th offloading action ab is obtained as

ab,i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, āt,i > āt,(b−1),

1, āt,i = āt,(b−1) and āt,(b−1) < 0.5,
0, āt,i = āt,(b−1) and āt,(b−1) > 0.5,
0, āt,i < āt,(b−1),

(28)

for i = 1, . . . ,M and b = 2, . . . , B/2.
Compared to the traditional K-nearest neighbor (KNN)

method, the order-preserving quantization method leads to
a higher diversity in the offloading action space. How-
ever, the offloading actions produced by conventional order-
preserving quantization method are still closely placed around
āt, which reduces the chance of finding a local optimum
in a large action space. To better explore the action space,
we introduce a Gaussian noise-added approach to generate the
other half of B/2 candidate actions. Specifically, we first add
a Gaussian noise to āt as

ät = fsg(āt + n), (29)

where n ∼ N (0, 1) and fsg(·) is the sigmoid function that
maps the original noise-added action to ät ∈ [0, 1]. Then,
we apply the order-preserving method on ät to generate the
B/2 offloading actions.

2) Critic Network: After generating the candidate offload-
ing actions in the actor network, we evaluate the ETC per-
formance of each action in the critic network. Instead of
training a critic DNN as the conventional actor-critic method
does, we can accurately and efficiently evaluate the ETC
corresponding to each candidate ab using our analysis in
Section III. In particular, we denote the ETC achieved by the
candidate ab as η∗(ht, f ct , ab) by optimizing the local CPU
frequencies f as described in Algorithm 1. This greatly reduces
the training cost of the critic DNN and increases the accuracy
of ETC evaluation. Accordingly, we choose the best offloading
action a∗

t at the t-th epoch as

a∗
t = arg min

ab∈Φt
η∗(ht, f ct , ab). (30)

Noticeably, a∗
t , together with its corresponding optimal

resource allocation f∗ constitutes the optimal solution to
Problem (P1) (or equivalently, Problem (P2)).

B. Offloading Policy Update

The optimal actions learned in the offloading action gen-
eration stage are used to update the parameters of the DNN
through the offloading policy update stage.

As illustrated in Fig. 3, we implement a replay memory
to store the past state-action pairs, where the memory is of
limited capacity. At the t-th epoch, ({ht, f ct },a∗

t ) obtained
in the actor-critic network based offloading action generation
stage is added to the memory as a new training data sample.
Note that the newly generated data sample will replace the
oldest one if the memory is full.

The data samples stored in the memory are used to train
the DNN. Specifically, in the t-th epoch, we randomly select
a batch of training data samples {({hω, f cω}, a∗

ω), ω ∈ Tt}
from the memory, where Tt represents the set of chosen time
indices. Then, we minimize the average cross-entropy loss
Loss(θt) through the Adam algorithm in order to update the
parameters θt of the DNN, where

Loss(θt) = − 1
|Tt|



ω∈Tt

�
(a∗
ω)� log gθt(hω, f

c
ω)

+(1 − a∗
ω)� log(1 − gθt(hω , f

c
ω))
	
. (31)
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Fig. 5. Illustration of a two-time offloading and an one-climb schemes in a
path o.

TABLE I

SIMULATION PARAMETERS

|Tt| is the size of Tt, the superscript 	 denotes the transpose
operator, and the log function is the element-wise logarithm
operation for a vector. For brevity, the detail of the Adam
algorithm is omitted here. In practice, we start the training
step when the number of samples is larger than half of the
memory size and train the DNN in every δ epochs in order to
collect a sufficient number of new data samples in the memory.

C. Low-Complexity Action Generation Method

Within the proposed DRL framework, we improve the
GNOP quantization method to further reduce the complexity.
The basic idea is to restrict our action selection only to
those offloading decisions that satisfy the following one-climb
policy.

Definition 3 (One-climb policy): The execution for the tasks
in each path of the graph G migrates at most once from the
MD to the edge server.

Fig. 5 illustrates the two-time offloading and one-climb
schemes in a path o. We show in the Appendix D that by
converting the scheme from the two-time offloading to the
one-climb policy, the MD saves the energy and time costs for
the path o. This however may increase the ETC of other paths
with overlapping tasks with path o. We show that, certain mild
conditions hold if the minimum ETC is achieved when all the
paths satisfy the one-climb policy. Please refer to Appendix D
for the detailed analysis.

The one-climb policy is applied to reduce the number
of offloading actions to be evaluated by the critic network.
Suppose that Φt = {ab|ab ∈ {0, 1}M , b = 1, . . . , B} is the set
of actions obtained by the GNOP quantization method at the
t-th epoch. We remove the actions in Φt that violate the one-
climb policy. By using the one-climb policy in the quantization
module, we efficiently reduce the number of calculations for
Algorithm 1 at the actor-critic network based offloading action
generation stage.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of our pro-
posed algorithm through numerical simulations. Consider three
different task graphs in Fig. 6, each consisting of 8 actual
tasks. Fig. 6(a) illustrates a mesh task graph including a set
of linear chains, while a task graph with tree-based structure
is considered in Fig. 6(b). In Fig. 6(c), we consider a general
task graph which is a combination of the mesh and the tree.
The input and output data size (KByte) of each task are
shown in Fig. 6. We assume that the computing workload
{Li} = [60.5 80.3 152.6 105.8 195.3 86.4 166.8 100.3]
(Mcycles) for all the three task graphs. The transmit power at
the MD and the AP are fixed as 100 mW and 1 W, respectively.
It is assumed that the CPU frequency f c is time-varying and
follows a uniform distribution between 2 GHz and 50 GHz.
Besides, the peak computational frequency of the MD is equal
to 0.01 GHz.

In the simulations, we assume that the average channel
gain h̄k,i follows the free-space path loss model h̄k,i =
Ad( 3·108

4πfcd
)PL, where Ad = 4.11 denotes the antenna gain,

fc = 915 MHz denotes the carrier frequency, d = 20 in
meters denotes the distance between the MD and the AP, and
PL = 3 denotes the pass loss exponent. The time-varying
fading channel huk,i follows an i.i.d. Rician distribution, where
the LOS link power is equal to 0.6h̄k,i. Besides, we follow
some classic uplink-downlink channel models that the random
variable downlink channel hdk,i is correlated with the uplink
channel huk,i and we set the correlation coefficient as 0.7
(the coefficient 0.7 is used in [28] for modeling weakly-
correlated uplink and downlink channels. For some highly
correlated case, the correlation coefficient is larger than 0.9).
The noise power σ2 = 10−10 W. In addition, we set the
computing efficiency parameter κ = 10−26, and the bandwidth
W = 2 MHz. The priority weights of energy consumption and
computation time of the MD are set as βt = βe = 0.5. The
parameters used in the simulations are listed in Table I.

We consider a fully connected DNN consisting of one
input layer, three hidden layers, and one output layer in
the proposed DRL algorithm, where the first, second, and
third hidden layers have 160, 120, and 80 hidden neurons,
respectively. We implement the DRL algorithm in Python with
TensorFlow and set the learning rate for Adam optimizer as
0.01, the training batch size |T | = 128, the memory size as
1024, and the training interval δ = 10.

A. Convergence Performance

Without loss of generality, we first consider the tree task
graph in Fig. 6(b) as an example to study the impact of the
parameters on the convergence performance of the proposed
DRL algorithm, including learning rates, batch sizes, memory
sizes, and learning intervals in Fig. 7. As shown in Fig. 7(a),
we illustrate the impact of the learning rate in Adam optimizer
on the moving average of the training loss over moving
windows of 15 epochs. It is observed that a too large (i.e.,
0.1) or a too small (i.e., 0.001) learning rate leads to a
worse convergence. Therefore, in the following simulations,
we set the learning rate as 0.01. As for different batch sizes
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Fig. 6. The considered task graphs in the simulation.

Fig. 7. Moving average of the training loss for the tree task graph with different parameters.

in Fig. 7(b), we observe that a large batch size (i.e., 1024)
causes higher fluctuation for the moving average of the training
loss, which is due to the frequent usage of the “old” training
data in the memory. Besides, a large batch size consumes
more time when training the DNN. Hence, the training batch

size is set to 128 in the following simulations. In Fig. 7(c),
the moving average of the training loss gradually decreases
and stabilizes at around 0.01 for different memory sizes.
In addition, we observe that the convergence performance is
insensitive to the memory size. In Fig. 7(d), we investigate the
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Fig. 8. Moving average of the training loss for the three task graphs when
the learning rate is 0.01, the training batch size is 128, the memory size is
1024, and the training interval is 10.

convergence of our proposed DRL algorithm under different
training intervals. It is observed that for different training
intervals, the moving average of the training loss gradually
decreases and becomes stable at around 0.02 after 400 training
steps, which means that the convergence performance is insen-
sible with respect to the training intervals. In the following
simulations, we set the training interval as 10.

Accordingly, Fig. 8 illustrates the convergence performance
of the DRL algorithm for the three task graphs, where we
set the learning rate as 0.01, the training batch size as 128,
the memory size as 1024, and the training interval as 10.
We observe that under different task graphs, the moving
average of the training loss is below 0.1 after 300 training
steps.

In Fig. 9, we plot the moving average of the accuracy
rates over training steps for the three task graphs, where the
proposed DRL algorithm is tested in each training step using
50 independent realizations. We define the accuracy rate as
χ = 1 − ηDRL−η∗

η∗ , where η∗ is the average optimal ETC
obtained by the exhaustive search method under the 50 inde-
pendent realizations and ηDRL−η∗

η∗ is the ratio of bias of the
ETC in DRL algorithm compared to the optimum. We see that
the moving average of the accuracy rates for the proposed DRL
algorithm gradually converges as the training step increases.
Specifically, for the mesh task graph, the achieved χ exceeds
0.99 after 800 training steps.

B. Energy and Time Cost (ETC) Performance Evaluation

We now compare the energy and time cost (ETC) perfor-
mance of the proposed methods with that of the following four
representative benchmarks.

• Gibbs sampling algorithm. The Gibbs sampling algo-
rithm updates the offloading decision iteratively based on
the designed probability distribution with respect to the
objective values and the temperature parameter. Accord-
ing to the proof in [29], a Gibbs sampling algorithm
obtains the optimal solution when it converges.

Fig. 9. Moving average of the accuracy rates over training steps for the
three task graphs when the learning rate is 0.01, the training batch size is
128, the memory size is 1024, and the training interval is 10.

Fig. 10. Comparisons of ETC performance for different offloading algo-
rithms.

• Exhaustive search. We enumerate all 2M feasible offload-
ing decisions and choose the optimal one that yields the
minimum ETC.

• All edge computing. In this scheme, all the tasks of the
MD are offloaded to the edge side for execution.

• All local computing. In this scheme, all the tasks of the
MD are executed locally.

In Fig. 10, we compare the ETC performance among
different offloading schemes under the three task topologies
in Fig. 6. Each point in the figure is the average performance
of 50 independent realizations. When evaluating the perfor-
mance, we have neglected the first 20000 time epochs as a
warm-up period, so that the DRL has converged. We observe
that for all the three task graphs, our proposed DRL algo-
rithm can achieve near-optimal performance compared with
the exhaustive search and the Gibbs sampling algorithms.
In addition, by applying the one-climb policy heuristics in the
GNOP quantization method, the ETC performance is hardly
affected. Besides, the DRL algorithm significantly outperforms
the all-edge-computing and all-local-computing schemes. This
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TABLE II

ACCURACY RATES χ FOR DIFFERENT TASK GRAPHS

Fig. 11. The tradeoff between the total execution time and energy consump-
tion of the MD under different weights for the tree task graph.

suggests the benefit of adapting the offloading decisions under
different wireless channels and edge CPU frequency.

Then, Table II illustrates the average accuracy rates of our
proposed DRL algorithm. It is observed that on average the
DRL algorithm achieves over 99.1% of the optimal ETC.
Specifically, for the general task graph shown in Fig. 6(c),
99.9% accuracy rate with respect to the ETC objective is
achieved.

In Fig. 11, we illustrate the tradeoff between the total
execution time and energy consumption of the MD under
different weights for the tree task graph. By setting βe+βt =
1, we observe that with the increase of βe, the MD achieves
lower energy consumption but higher execution time. Notice
that the values of the energy consumption E and the total
execution time T are within a similar range (from 0 to about
50). In fact, even if their values are within rather dissimilar
ranges (e.g., 0-1000 for E and 0-5 for T ), we may simply
scale the values of E or T using proper weighting parameters
to ensure that the weighted sum performance can reflect
non-trivial performance tradeoff, i.e., one objective does not
dominate the other when optimizing the offloading decisions
and resource allocation. In Fig. 12, we further compare the
ETC performance for different offloading algorithms under
different weights in the tree task graph. When βe and βt
vary, our proposed DRL algorithm is also applicable and we
can obtain the same insights as observed in Fig. 10. We find
that the proposed DRL algorithm achieves close-to-optimal
performance under different βe and βt. Therefore, without
loss of generality, we consider βe = βt = 0.5 in the rest
of simulations.

Fig. 12. Comparisons of ETC performance for different offloading algorithms
under different weights in the tree task graph.

Fig. 13. Computation time for each epoch under the tree task graph.

C. Complexity of the Proposed DRL Algorithm

At last, we compare the computational complexity among
the four algorithms, where the number of quantized offloading
decisions for each epoch in the DRL algorithm B = 16.
We see from the Table III that the DRL algorithm with one-
climb policy based GNOP quantization significantly reduces
the computation time compared with the DRL algorithm with
GNOP method. That is, around 37.15%, 4.86%, and 33.86%
lower average runtime achieved in the mesh, tree, and general
task graphs, respectively. Therefore, the one-climb policy
heuristics can achieve the near performance as the original
GNOP method, while efficiently reducing the complexity
of the proposed DRL algorithm. Specifically, in Fig. 13,
we illustrate the computation time for each epoch in the DRL
algorithm with one-climb policy based GNOP method under
the tree task graph. For some epochs, the DRL algorithm
with one-climb policy based GNOP only consumes around
0.3 second for obtaining the optimal solution.

Furthermore, as shown in Table III, the DRL algorithm with
one-climb policy based GNOP requires much shorter runtime
than the Gibbs sampling algorithm and the exhaustive search
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TABLE III

COMPARISIONS OF AVERAGE COMPUTATION TIME FOR EACH REALIZATION

method. In particular, for the general task graph, it outputs
an offloading decision in around 1 second for each realization
on average, while the Gibbs sampling and exhaustive search
methods spend 8 times and 26 times longer runtime, respec-
tively.

VI. CONCLUSION

Considering a single-user MEC system with a general task
graph, this paper has proposed a DRL framework to jointly
optimize the offloading decisions and resource allocation, with
the goal of minimizing the weighted sum of MD’s energy
consumption and task execution time. The DRL framework
utilizes a DNN to learn and improve the offloading policy from
the experiences, which completely removes the need of solving
hard combinatorial optimization problem. Besides, we have
derived a Gaussian noise-added order-preserving quantization
method to efficiently generate offloading actions in the DRL
framework. Meanwhile, a low-complexity algorithm has been
proposed to accurately evaluate the ETC performance of each
generated offloading decision. We have further proposed an
one-climb policy to speed up the learning process. Simulation
results have demonstrated that the proposed algorithm can
achieve near-optimal performance while significantly decreas-
ing the complexity compared to the conventional optimization
methods.

APPENDIX A
PROOF OF LEMMA 3.1

According to (5), (6), (11) and (12), we have

FT lM+1 = RT lM+1 + τ lM+1

= max
km∈pred(M + 1)

�
(1 − akm)FT lkm

+akm(FT ckm + τdkm,M+1)
�

= max
km∈pred(M + 1)

�
(1 − akm)(RT lkm + τ lkm)

+akm(RT ckm + τckm + τdkm,M+1)
�
. (32)

For the term RT lkm in (32), we have

RT lkm = max
km−1∈pred(km)

�
(1 − akm−1)FT

l
km−1

+akm−1(FT
c
km−1

+ τdkm−1,km)
�

= max
km−1∈pred(km)

�
(1 − akm−1)(RT

l
km−1

+ τ lkm−1
)

+akm−1(RT
c
km−1

+ τckm−1
+ τdkm−1,km)

�
. (33)

For the term RT ckm in (32), we have

RT ckm = max
km−1∈pred(km)

�
(1 − akm−1)(FT

l
km−1

+ τukm−1,km)

+akm−1FT
c
km−1

�

= max
km−1∈pred(km)

�
(1 − akm−1)(RT

l
km−1

+ τ lkm−1

+τukm−1,km) + akm−1(RT
c
km−1

+ τckm−1
)
�
. (34)

Substituting (33) and (34) into (32), we have FT lM+1 as
in (35), shown at the bottom of the next page, where To is
defined in (16).

APPENDIX B
PROOF OF PROPOSITION 3.1

The derivative of L of (18) with respect to τ li can be
expressed as

∂L

∂τ li
= −2κβe(Li)3

(τ li )3
+


o∈Υ(i)

λo, (36)

where ∂L
∂τ li

is a monotonously increasing function with τ li ∈
[ Li
fpeak

,+∞). Thus, if ∂L
∂τ li

|
τ li=

Li
fpeak

> 0, we have (f li )
∗ =

fpeak. Otherwise, we have

τ li =Li 3

�
2κβe�
o∈Υ(i) λo

⇒(f li )
∗=

Li

τ li
= 3

��
o∈Υ(i) λ

∗
o

2κβe
. (37)

Hence,

(f li )
∗ = min

⎧⎨
⎩ 3

��
o∈Υ(i) λ

∗
o

2κβe
, fpeak

⎫⎬
⎭ . (38)

APPENDIX C
PROOF OF COROLLARY 3.1

The derivative of L of (18) with respect to Tmax can be
expressed as

∂L

∂Tmax
= βt −

O

o=1

λo. (39)
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By setting ∂L
∂Tmax

= 0, we have

O

o=1

λ∗o = βt. (40)

APPENDIX D
OPTIMALITY ANALYSIS FOR ONE-CLIMB POLICY

In the following, we analyze the optimality of the one-
climb policy. Suppose that there exists a path o in the
task graph, where the optimal offloading decision allows
the MD to offload its task data for two times. Under
the two-time offloading scheme, for the tasks in Ψ(o) =
{0, ko1, . . . , kox, . . . , kos−1, k

o
s , . . . , k

o
n, k

o
n+1, . . . , k

o
y, . . . ,M +

1}, tasks from kox to kos−1 are migrated to the edge server for
execution. Then, tasks from kos to kon prefer local computing,
followed by tasks from kon+1 to koy migrated to the edge
server. We also consider an one-climb scheme for performance
comparison, where tasks from kox to koy are executed on the
edge server.

We denote the optimal offloading decision and local CPU
frequencies in the two-time and one-climb offloading schemes
as {â, f̂} and {ã, f̃}, respectively. By the optimality assump-
tion, we have η(â, f̂) < η(ã, f̃).

For the two-time offloading policy in path o, the total
execution time from the kox-th task to the koy-th task can be
expressed as

T̂
kox∼koy
o =

s−1

m=x

(τckom ) + τdkos−1,k
o
s

+
n


m=s

(τ lkom)

+τukon,kon+1
+

y

m=n+1

(τckom). (41)

As for the one-climb policy in path o, we have

T̃
kox∼koy
o =

y

m=x

τckom . (42)

Since f c > fpeak, the following inequalities hold for the
kos -th and kon-th tasks:

τckos < τ lkos < τ lkos + τdkos−1,k
o
s
, (43)

τckon < τ lkon < τ lkon + τukon,kon+1
. (44)

In addition, we have τckom < τ lkom ,m = s, . . . , n for the tasks in
the o-th path between kos and kon. Therefore, it can be shown

that T̂
kox∼koy
o > T̃

kox∼koy
o .

On the other hand, with respect to the energy consumption
of the MD from the kox-th task to the koy-th task in the o-th path,
we observe that the two-time offloading scheme consumes
more energy compared with the one-climb policy due to the
local tasks computing elkoi

from kos to kon and the kon+1-th

task’s offloading eukon,kon+1
. That is, Ê

kox∼k
o
y

o > Ẽ
kox∼k

o
y

o , where

Ê
kox∼k

o
y

o and Ẽ
kox∼k

o
y

o denote the energy consumption from the
kox-th task to the koy-th task in the o-th path under the two-time
and one-climb offloading schemes, respectively.

For another path o� in the task graph G, we assume that in
the one-climb scheme, tasks from ko

�
x to ko

�
y are executed on

the edge server. Consider the tasks in {kos , . . . , kon} that the
path o� also contains. If {kos , . . . , kon}

�
Ψ(o�) = ∅, we have

T̃o� = T̂o� , where T̃o� is the total execution time in the o�-th
path under one-climb policy, and T̂o� is the execution time
when the tasks in {kos , . . . , kon}

�
Ψ(o�) choose to perform

local computing due to the two-time offloading scheme in
the o-th path. Meanwhile, Ẽo� = Êo� , where Ẽo� is the
total energy consumption in the o�-th path under one-climb
policy, and Êo� is the energy consumption when the tasks in
{kos , . . . , kon}

�
Ψ(o�) change their offloading decisions due to

the two-time offloading scheme in the o-th path. Otherwise,
if {kos , . . . , kon}

�
Ψ(o�) �= ∅, we consider the following four

cases.

• As shown in Fig. 14(a), suppose that the tasks in
{kos , . . . , kon}, which the path o� also includes, are
the first z tasks offloaded to the edge in path o�

under one-climb scheme, i.e., {kos , . . . , kon}
�

Ψ(o�) =

FT lM+1 = max
km∈pred(M + 1)

�
(1 − akm)τ lkm + akm(τckm + τdkm,M+1)

�
+ max
km∈pred(M + 1)

max
km−1∈pred(km)�

(1 − akm−1)τ
l
km−1

+ akm−1τ
c
km−1

+ akm(1 − akm−1)τ
u
km−1,km + (1 − akm)akm−1τ

d
km−1,km

�

+ max
km∈pred(M + 1)

max
km−1∈pred(km)

�
(1 − akm−1)RT

l
km−1

+ akm−1RT
c
km−1

�
= max

km∈pred(M + 1)

�
(1 − akm)τ lkm + akm(τckm + τdkm,M+1)

�
+ max
km∈pred(M + 1)

max
km−1∈pred(km)�

(1 − akm−1)τ
l
km−1

+ akm−1τ
c
km−1

+ akm(1 − akm−1)τ
u
km−1,km + (1 − akm)akm−1τ

d
km−1,km

�
+ max
km∈pred(M + 1)

max
km−1∈pred(km)

max
km−2∈pred(km−1)

�
(1 − akm−2)τ

l
km−2

+ akm−2τ
c
km−2

+akm−1(1 − akm−2)τ
u
km−2,km−1

+ (1 − akm−1)akm−2τ
d
km−2,km−1

�
+ . . .

+ max
km∈pred(M + 1)

max
km−1∈pred(km)

. . . max
k1∈pred(k2)

max
0∈pred(k1)

�
ak1τ

u
0,k1

�
= max{T1, T2, . . . , To, . . . , TO}. (35)
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Fig. 14. Illustration of different offloading decisions at the path o′ due to the overlapping tasks belonging to path o.

{ko�x , ko
�
x+1, . . . , k

o�
x+z}. We have

T̂o� − T̃o� =
O
ko

�
x+z,k

o�
x+z+1

Ru(hu
ko

�
x+z,k

o�
x+z+1

) −
O
ko

�
x−1 ,k

o�
x

Ru(hu
ko

�
x−1,k

o�
x

)

+Y − Z, (45)

and

Êo� − Ẽo� = PMD[
O
ko

�
x+z,k

o�
x+z+1

Ru(hu
ko

�
x+z,k

o�
x+z+1

) −
O
ko

�
x−1,k

o�
x

Ru(hu
ko

�
x−1,k

o�
x

) ]

+X, (46)

where X,Y, Z are the total local execution energy con-
sumption, local computing time and edge execution time
among the tasks {kos , . . . , kon}

�
Ψ(o�) in the path o�,

respectively. In this case, if T̂o� > T̃o� and Êo� > Ẽo�

hold, the following inequality needs to be satisfied:

Δu =
Oko�x+z,ko

�
x+z+1

Ru(hu
ko

�
x+z,k

o�
x+z+1

)
−

Oko�x−1,k
o�
x

Ru(hu
ko

�
x−1,k

o�
x

)

<
X + Y − Z

1 + PMD
, (47)

where Δu denotes the gap of the uplink transmission
time associated with two ordered transferred data in G.
Note that X + Y is a function with respect to the local
CPU frequencies f li , i ∈ {kos , . . . , kon}

�
Ψ(o�) and can

achieve minimum when f li = min{ 3

�
1
2κ , fpeak}, ∀i ∈

{kos , . . . , kon}
�

Ψ(o�). Let (X+Y )∗ denote the minimum
of X + Y . Thus, (47) can be rewritten as

Δu <
(X + Y )∗ − Z

1 + PMD
. (48)

• As shown in Fig. 14(b), suppose that the tasks
in {kos , . . . , kon}, which also exist in path o�, are
the last z tasks offloaded to the edge in path o�

under one-climb scheme, i.e., {kos , . . . , kon}
�

Ψ(o�) =
{ko�y−z, ko

�
y−z+1, . . . , k

o�
y }. Similarly, if T̂o� > T̃o� and

Êo� > Ẽo� , we have

Δd =
Oko�y−z−1,k

o�
y−z

Rd(hd
ko

�
y−z−1,k

o�
y−z

)
−

Oko�y ,ko
�
y+1

Rd(hd
ko�y ,k

o�
y+1

)

< X + Y − Z, (49)

where Δd denotes the gap of the downlink transmission
time associated with two ordered transferred data in G.
Then, we have

Δd < (X + Y )∗ − Z. (50)

• As shown in Fig. 14(c), suppose that the tasks in
{kos , . . . , kon}, which the path o� consists of, are the total
tasks offloaded to the edge in path o� under one-climb
scheme, i.e., {kos , . . . , kon}

�
Ψ(o�) = {ko�x , . . . , ko

�
y }.

If T̂o� > T̃o� and Êo� > Ẽo� hold, we have

Δud = (1 + PMD)
Oko�x−1,k

o�
x

Ru(hu
ko

�
x−1,k

o�
x

)
+

Oko�y ,ko
�
y+1

Rd(hd
ko�y ,ko

�
y+1

)

< X + Y − Z. (51)

That is,

Δud < (X + Y )∗ − Z. (52)

• Otherwise, as shown in Fig. 14(d), we can find
that changing the offloading decisions for the tasks
{kos , . . . , kon}

�
Ψ(o�) from 1 to 0 will lead to multi-

time offloading in the path o�. According to the above
discussion, we have T̂o� > T̃o� and Êo� > Ẽo� .

Overall, if T̂o� > T̃o� and Êo� > Ẽo� , (48), (50) and (52)
need to hold. Suppose that we have T̂o� > T̃o� and Êo� > Ẽo� .
Then,

F̃ T
l

M+1(ã, f̂) < F̂T
l

M+1(â, f̂), (53)

where F̃ T
l

M+1 is the total execution time of the task graph G

when all the paths follow the one-climb policy, while F̂ T
l

M+1
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is the final delay when the tasks in path o prefer two-time
offloading scheme. Meanwhile,

Ẽ(ã, f̂ ) < Ê(â, f̂), (54)

where Ẽ denotes the total energy consumption of the task
graph G when all the paths follow the one-climb policy, while
Ê denotes the total energy consumption when the tasks in path
o prefer two-time offloading scheme.

Therefore, we have

η(â, f̂) = βtF̂ T
l

M+1(â, f̂) + βeÊ(â, f̂)

> βtF̃ T
l

M+1(ã, f̂) + βeẼ(ã, f̂)

≥ βtF̃ T
l

M+1(ã, f̃) + βeẼ(ã, f̃) = η(ã, f̃), (55)

where the last inequality means that the optimal {f̂} in a
two-time offloading scheme is a feasible solution in the one-
climb offloading scheme of (P2). Therefore, it contradicts the
assumption. To sum up, we have (48), (50) and (52) if the
one-climb policy is optimal.
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