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Abstract— In mobile edge computing (MEC) systems, edge
service caching refers to pre-storing the necessary programs for
executing computation tasks at MEC servers. Service caching
effectively reduces the real-time delay/bandwidth cost on acquir-
ing and initializing service applications when computation tasks
are offloaded to the MEC servers. The limited caching space
at resource-constrained edge servers calls for careful design
of caching placement to determine which programs to cache
over time. This is in general a complicated problem that
highly correlates to the computation offloading decisions of
computation tasks, i.e., whether or not to offload a task for
edge execution. In this paper, we consider a single edge server
that assists a mobile user (MU) in executing a sequence of
computation tasks. In particular, the MU can upload and run
its customized programs at the edge server, while the server
can selectively cache the previously generated programs for
future reuse. To minimize the computation delay and energy
consumption of the MU, we formulate a mixed integer non-
linear programming (MINLP) that jointly optimizes the service
caching placement, computation offloading decisions, and system
resource allocation (e.g., CPU processing frequency and transmit
power of MU). To tackle the problem, we first derive the closed-
form expressions of the optimal resource allocation solutions, and
subsequently transform the MINLP into an equivalent pure 0-1
integer linear programming (ILP) that is much simpler to solve.
To further reduce the complexity in solving the ILP, we exploit the
underlying structures of caching causality and task dependency
models, and accordingly devise a reduced-complexity alternating
minimization technique to update the caching placement and
offloading decision alternately. Extensive simulations show that
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the proposed joint optimization techniques achieve substantial
resource savings of the MU compared to other representative
benchmark methods considered.

Index Terms— Mobile edge computing, service caching, com-
putation offloading, resource allocation.

I. INTRODUCTION

A. Motivations and Summary of Contributions

THE proliferation of modern wireless applications, such
as mobile gaming and augmented reality, demands per-

sistent high-performance computations at commercial wireless
devices to execute complex tasks with ultra-low latency.
Over the last decade, large-scale cloud computing platforms
have been extensively deployed, which allows the wireless
devices to offload intensive computation to remote cloud
servers with abundant computing resource [1]. To reduce the
long backhaul transmission delay in the cloud, mobile edge
computing (MEC) has recently emerged to support ubiquitous
high-performance computing, especially for delay-sensitive
applications [2]. Specifically, MEC pushes publicly accessible
computing resource to the edge of radio access network, e.g.,
cellular base stations and Wi-Fi access points, such that mobile
users (MUs) can quickly offload computing tasks to their
nearby edge servers.

Computing a task requires both the user task data as the
input and the corresponding program that processes it. The
use of caching to dynamically store the program and/or task
data at the MEC system has been recently recognized as a
cost-effective method to reduce computation delay, energy
consumption, and bandwidth cost. Here, we refer to caching
the input and/or output data of computation tasks at the
server/user side as computation content caching (such as
in [3]–[7]). Likewise, we refer to caching the program data for
executing computation tasks as computation service caching
(such as in [8]–[13]). Content caching reduces the frequency
of repeated data transmissions and task computations. Its
effectiveness relies on a strong assumption that the cached
input/output data of a computation task is frequently reused by
future executions. In practice, however, the input data and the
corresponding computation output data of an application are
rather dissimilar and hardly reusable for separate executions,
e.g., human face recognition and interactive online gaming.
In comparison, program data (and/or library data) in the
cache is evidently reusable by future executions of the same
application, e.g., the program and library for human face
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recognition. In an MEC platform, the cold start initialization
of an application includes starting a cloud function, loading
necessary libraries, and initializing user-specific code [14].
Among them, it may take tens of seconds to load all the nec-
essary application libraries. Caching the program data/library
can effectively reduce the delay caused by application initial-
ization or remote computation migration due to the absence of
necessary program [15]. Because edge servers are often limited
in the caching space, a major design problem is to selectively
cache service data over space (e.g., at multiple edge servers)
and time for achieving optimum computing performance, e.g.,
minimum computation delay.

Existing work on mobile service caching has mostly
assumed that the MU offloads all its computation tasks for
edge/cloud execution. The tasks are executed at the edge server
if the server has cached the required program. Otherwise, the
edge server further offloads the task to a remote cloud server
that can always compute the task at the cost of longer backhaul
delay and larger bandwidth usage (e.g., see [8]–[13]). The
focus of these works is to optimize the offline and online
service caching placement decisions (i.e., what, when and
where to cache) to minimize the computation workload for-
warded to the cloud. Nonetheless, it is in general non-optimal
to offload all computation tasks for edge/cloud execution.
On one hand, the transmission of task data incurs long delay
when the wireless channel condition is unfavorable. On the
other hand, the edge computation may incur long delay in
acquiring and initializing the service program when it is not
pre-cached. Alternatively, opportunistic computation offload-
ing that allows the flexibility to execute some tasks locally
at the MUs could be better off. Its performance advantage
over full computation offloading has been verified by extensive
recent studies under various network setups [16]–[26]. Notice
that the task offloading decisions (i.e., whether offloading a
task or computing locally) and the service caching placement
are closely correlated. Intuitively, we tend to offload a task if
the required program is already cached at the edge. Likewise,
caching a program is cost-saving only if it is frequently reused
to execute the tasks offloaded in the future. Therefore, it is
necessary to jointly optimize service caching placement and
offloading decisions in an MEC system. Such study, however,
is largely overlooked in the existing literature.

Meanwhile, most existing work implicitly assumes that
a central entity, e.g., the owner of the edge/cloud servers,
is responsible for provisioning the program data in the cache,
and that all required programs can be retrieved from a program
pool in the backhaul network (e.g., in [8]–[13]). However,
as the mobile computing scenarios become increasingly het-
erogeneous, it is common to allow the MUs to run custom-
made or user-generated programs at the edge/cloud platforms.
In fact, this is consistent with the concept of virtualization
and infrastructure-as-a-service (IaaS) in edge/cloud computing
paradigms, where the MUs are entitled to running their own
programs using the physical resources of computing, storage,
and networking provided by the infrastructure owners [27].
For instance, [28] implemented an edge computing platform
for image recognition using serverless functions. Multiple
MUs send their own deep learning-based image recognition
applications and personal images to an edge server, from

which they receive the recognition results.1 The application
response latency is 744 milliseconds at its initial call and is
reduced to an average of 45 milliseconds in the subsequent
calls when the application service is cached. This implies
that the overhead on uploading and initializing the application
has significant impact to the service caching placement and
offloading decisions.

In this paper, we consider an MEC system, where an edge
server assists an MU in executing a sequence of M dependent
tasks, where the output of one task is the input of the next one.
Each task belongs to one of the N applications and is either
computed locally or offloaded for edge execution. In particular,
the MU provides the program data for computing the tasks in
the edge, while the edge server can selectively cache the previ-
ously generated programs and reuse them for processing future
tasks. The detailed contributions of this paper are as follows.

• We formulate a mixed integer non-linear programming
(MINLP) problem to minimize the overall computation
delay and energy consumption of the MU. Specifically,
the problem jointly determines the optimal offloading
decision of each task (M binary variables), the service
caching placement at the edge server throughout the
task execution time (MN binary variables), and system
resource allocation (continuous variables representing the
CPU processing frequency and transmit power of MU).
The MINLP problem is in general lack of an efficient
optimal algorithm in its original form.

• To tackle the problem, we first show that we can sepa-
rately optimize the system resource allocation and derive
the closed-form expressions of the optimal solutions.
Based on the results, we then transform the MINLP into
a pure 0-1 integer linear programming (ILP) problem that
optimizes only the binary offloading decisions and service
caching placements. The ILP problem can be handled by
standard integer optimization algorithms, e.g., branch and
bound method [29]. However, the exponential worst-case
complexity can be high when either M or N is large.

• To gain more insight on the optimal solution structure
and reduce the complexity of solving a large-size ILP
problem, we first study the problem to optimize the
MN caching placement variables given the offloading
decisions. By exploiting the caching causality property,
we transform the original problem into a standard mul-
tidimensional knapsack problem (MKP). The MKP has
no more than M binary variables and can be efficiently
handled by some off-the-shelf algorithms even if M is
relatively large, e.g., M = 600 [30].

• We then optimize the M offloading decisions given the
caching placement. Interestingly, we find that the only
difficulty lies in optimizing the offloading decisions of
the “uncached" tasks, whose required programs are not
in the service cache. Meanwhile, the optimal offloading
decisions of the remaining cached tasks can be easily
retrieved. Together with our analysis on caching place-
ment optimization, this leads to a reduced-complexity

1The image recognition application in [28] was written in C++ based on
the tiny-dnn library (https://github.com/tiny-dnn/tiny-dnn), compiled to native
x86 executable file in size 8.4 MB, and further executed within an OpenWhisk
Apache container (http://openwhisk.apache.org/) at the edge server.
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alternating minimization that iteratively updates the
caching placements and offloading decisions.

Our simulations show that the joint optimization signifi-
cantly reduces the computation delay and energy consumption
of the MU compared to other benchmark methods. Meanwhile,
the sub-optimal alternating minimization provides a reduced-
complexity alternative for large-size problems. It is worth men-
tioning that this paper considers an offline model that assumes
non-causal knowledge of future computation task parameters.
The assumption is made to characterize the optimal structures
of caching placement and offloading decisions. The obtained
results can serve as an offline benchmark and may inspire
future online algorithm designs that assume more practical
prior knowledge.

B. Related Works

Extensive prior work, e.g., [16]–[26], has considered joint
optimization of the task offloading decision (i.e., whether
or how much data to offload) and system-level resource
allocation (e.g., spectrum and computing power) to maximize
the computational capability of an MEC system. Depending
on the nature of the computation tasks, computation offloading
is performed by following either a partial offloading policy,
i.e., an arbitrary part of the task data can be offloaded for edge
execution, or a binary offloading policy that an entire task is
either offloaded or computed locally [2]. For instance, [17]
optimizes a partial offloading policy in a multi-user MEC
system to minimize the weighted sum energy consumption of
the users. For multi-user MEC with binary offloading, [18]
applies a separable semidefinite relaxation method to opti-
mize the binary offloading decisions and wireless resource
allocation. To support heterogenous computation tasks in IoT
systems, [20] and [21] optimize the edge computation resource
provisioning and task offloading/scheduling decisions to max-
imize the system operating efficiency (e.g., minimum oper-
ating cost or maximum accepted workload). To address the
problem of high computation power consumption of wireless
devices, [23]–[25] consider using wireless energy transfer
technology to power wireless devices in MEC networks,
and optimize the system computing performance under either
partial or binary offloading policy. When the computation tasks
at different MUs have input-output dependency, [26] studies
the optimal binary offloading strategy and resource allocation
to minimize the computation delay and energy consumption.
The above work, however, ignores the use of edge caching to
enhance the system-level computing performance.

On the other hand, recent work has applied content caching
to MEC systems to effectively reduce computation delay,
energy consumption, and bandwidth cost. In particular,
an edge server can cache task output data [3], task input
data [4], and intermediate task computation results that are
potentially useful for future task executions [5]. Meanwhile,
content caching can also be implemented at the MU side to
minimize the offloading (downloading) traffic to (from) the
edge server [6]. To address the uncertainty of future task
parameters, [5] and [7] propose online caching placement and
prediction-based data prefetch methods. Despite their respec-
tive contributions, the fundamental assumption on reusing task
input/output data may not hold for many mobile applications.

Computation service caching, on the other hand, caches the
program data for processing a specific type of application.
For instance, [8] considers caching program data of multiple
applications in a set of collaborative BSs, and optimizing the
caching placement and user-BS associations to minimize the
data traffic forwarded to the remote cloud. A similar service
caching placement problem is considered in [9] under commu-
nication, computation, and caching capacity constraints. Under
the uncertainty of user service requests, e.g., application type
and computation workload, [10] proposes a prediction-based
online edge service caching algorithm to reduce the traffic
load forwarded to the cloud. For a single edge server, [11]
assumes zero knowledge of future task arrivals and proposes
an online service caching algorithm that achieves the opti-
mal worst-case competitive ratio under homogeneous task
arrivals. [12] proposes an online caching algorithm for col-
laborative edge servers to minimize the overall computation
delay. Unlike [8]–[12] that assume an entire task is computed
either at an edge server or the cloud, [13] assumes that
a task can be partitioned and executed in parallel at both
the cloud and edge servers that have cached the necessary
program.

All the above works neglect an important scenario where a
task can be computed locally at the MU when edge execution
is costly. Besides, they implicitly assume that a service pro-
gram pool can provide all the programs required by the MUs.
In this paper, we include local computation as an option for the
MU, and allow the MU to upload its own programs to run at
the edge server. In this case, the optimal caching placement is
closely related to the offloading decisions, and vice versa, such
that a joint optimization is required for maximum computation
performance.

II. SYSTEM MODEL

A. Service Cache-Assisted MEC System

In Fig. 1, we consider an edge server assisting the com-
putation of an MU. This may correspond to a tagged MU
in a multi-user network where each MU has been allocated
with dedicated edge computing and communication resource
to execute its own tasks. Some popular methods to achieve
edge resource isolation include the container [31] and server-
less computing technologies [14], where the server resources
(including CPU, memory, disk and networking resources, etc.)
are partitioned into separate user space environments that do
not interact with each other on the machine. For the tagged
MU, we assume that it has a sequence of M computation
tasks to execute and each task is processed by one of the N
programs considered. We refer to a task as a type-j task if
it is processed by the jth program. Accordingly, we define a
binary indicator ui,j such that ui,j = 1 if the ith task is a
type-j task, and 0 otherwise. Besides, we denote the type of
the ith task as ϕi ∈ {1, · · · , N}, e.g., ϕ1 = 1 and ϕ3 = 2
in Fig. 1. The M tasks are dependent such that the input of
the (i + 1)th task requires the output of the ith task, i =
1, · · · ,M − 1. One typical application of the sequential task
execution model is eyeDentify [32], which consists of a series
of steps for feature extraction operation in order to convert
the raw image into a feature vector. Another application is a
real time face recognition system in [33], which consists of a
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Fig. 1. Schematics of the considered service cache-assisted MEC system.

series of subtasks such as image extract, feature computation,
histogram equalization, face detection, recognizer, and finding
algorithm, etc. The optimal computation offloading problem in
MEC system under the sequential task execution model have
been studied in [34] and [35], where the execution of each
subtask only requires the output of the previous one.

The size of the input and output data of the ith task
is denoted by Ii and Oi, respectively. Besides, Li denotes
the computing workload to process task i. For simplicity of
illustration, we introduce two pseudo-tasks indexed as 0 and
M + 1, and set L0 = LM+1 = 0, O0 = I1 and OM = IM+1.
Overall, the input and output task data sizes are related by
Ii = Oi−1, i = 1, · · · ,M + 1. The MU follows the binary
offloading policy so that each task can be computed either
locally at the MU or offloaded to the edge server for remote
execution. We use ai ∈ {0, 1} to denote that the ith task
is executed locally (ai = 0) or at the edge server (ai = 1).
In particular, we set a0 = 0 and aM+1 = 0, indicating that the
series of computations initiate and terminate both at the MU.
It is worth noting that the sequential task execution model can
be extended to cascade the sub-tasks of multiple applications
into a one “super-task" consisting of all the sub-tasks.

Suppose that the MU runs its customized programs at
the MEC platform by uploading its own program data (e.g.,
C/C++ code to generate a program). We denote the size
of data to generate the jth program as sj , j = 1, · · · , N .
After receiving the program data, the edge server generates the
corresponding program (e.g., the binary executable .EXE file)
for processing the task data later offloaded. We denote the size
of the jth generated program as cj , where cj is in general much
larger than sj . Meanwhile, the edge server has a service cache
that can cache the previously generated programs for future
service reuse. We denote xi,j = 1 (or 0) if the jth program is
in the edge service cache (or not) before the execution of the
ith task, either locally or at the edge, where i = 1, · · · ,M .
The edge server can decide to add (or remove) a program

to (from) the cache during each task execution time, if the
action is feasible under a finite caching space. For simplicity
of illustration, we neglect the cost of adding or removing a
program at the service cache and assume that the cache is
empty initially, i.e., x1,j = 0 for all j.

Notice that the program data and task data can be offloaded
separately. As an illustrative example in Fig. 1, at the server
side, a shaded (an empty) square in the jth row and ith column
denotes xi,j = 1 (xi,j = 0). For example, the 1st program is
cached before the execution of the 2nd task until the end of
the execution of the 4th task (i.e., x2,1 = x3,1 = x4,1 =
1). Besides, the dashed square denotes the location of task
execution. For example, the 4 tasks from the 1st until the
4th are executed at the edge, while the 5th and 6th tasks are
executed locally (i.e., a1 = a2 = a3 = a4 = 1 and a5 = a6 =
0 as shown in Fig. 1). For the 1st task to be executed at the
edge, we need to upload both program and task data, as they
are both absent at the server before the execution. However,
we only need to offload the program data of the 3rd and 4th
tasks, because their task input data is already at the edge as
the output of previous edge computations. In addition, the 7th
task only uploads the task data, because the corresponding
program is already in the edge service cache.

The detailed computation, caching, and communication
models are described as follows:

1) Computation Model: We assume that the MU has all the
programs needed to process its tasks, e.g., pre-installed in the
on-chip disk, such that the time consumed on processing a task
i locally only consists of the computation time.2 Specifically,
the time and energy consumed on computing the ith task

2For fast service data access and removal, edge servers cache the pro-
gram data in high-speed memory, e.g., SRAM or RAM. Many commercial
edge/cloud service platforms only allocate very limited memory to a user,
e.g., the AWS Lambda platform provides the choice of 128 MBytes memory
allocated to a user [14]. In comparison, a common mobile phone has at
least several Gigabytes disk memory available, which is slower but much
less expensive, and sufficiently large to pre-install all the programs.
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locally are [16]

τ l
i =

Li

fi
, el

i = κfα
i τ

l
i = κ

(Li)α

(τ l
i )α−1

, (1)

respectively, where fi denotes the local CPU frequency and
is constrained by a maximum frequency fi ≤ fmax, κ > 0
denotes the computing energy efficiency parameter, and α ≥ 2
denotes the exponent parameter.

When task i is executed on the edge, the computation time
includes two parts. First, the task processing time τc

i = Li

f0
,

where f0 denotes the fixed CPU frequency of the edge server.
We assume that f0 > fmax, i.e., the server has stronger
computing power than the MU. Second, the server may need
to generate a new program (e.g., program compilation and
load function library) if it is not already in the cache. The
program generation time of the ith task, if necessary, is Wi ��N

j=1 ui,jDj , where Dj denotes the generation time of the
jth program.

2) Service Caching Model: We assume that the MU can
only upload the program data for processing the current task
that is executed at the edge. That is, the MU can only upload
the j-th program data when executing the ith task at the edge
if ui,j = 1 and ai = 1. Accordingly, xi,j = 1 is attainable
only if at least one of the following two conditions holds:

1) the jth program was in the cache before the execution
of the last task (xi−1,j = 1);

2) the jth program data was uploaded to the edge server
in the last task execution time. This requires ui−1,j = 1
and ai−1 = 1, or equivalently ai−1ui−1,j = 1.

If neither condition is satisfied, we have xi,j = 0. Equivalently,
the above caching causality constraint is expressed as

xi,j ≤ ai−1ui−1,j + xi−1,j , (2)

for i = 1, · · · ,M, j = 1, · · · , N . Besides, we need to
observe the following caching capacity constraint throughout
processing the M tasks,

N�
j=1

cj · xi,j ≤ C, i = 1, · · · ,M, (3)

where C is the caching space allocated by the MEC plat-
form to serve the MU. In this paper, we assume that C ≥
maxj=1,··· ,M cj to avoid trivial solution.

3) Communication Model: Data transmissions between the
edge server and the MU include uploading the program
and/or task data, and downloading the computation result. For
simplicity, we assume uplink/downlink channel reciprocity
and use hi to denote the channel gain when transmitting
the data of the ith task. We assume that hi remains con-
stant during the data transmission of the ith task and may
vary across different tasks. The uploading data rate for the
ith task is Ru

i = B log2

�
1 + pihi

σ2
i

�
, where B denotes the

communication bandwidth, pi denotes the transmit power, and
σ2

i denotes the receiver noise power including both potential
interference and receiver thermal noise. Without loss of gen-
erality, we assume equal noise power for notation brevity, i.e.,

σ2
i = σ2 for i = 1, · · · ,M . Then, the time consumed on

offloading the program data of the ith task is

τs
i =

�N
j=1 ui,jsj

Ru
i

� Vi

Ru
i

, (4)

where Vi �
�N

j=1 ui,jsj denotes the program data size of the
ith task. Define function g(x) = σ2

�
2

x
B − 1

�
. It follows from

(4) that the transmit power ps
i and the energy consumption es

i

are

ps
i =

1
hi
g

�
Vi

τs
i

	
, es

i = ps
i τ

s
i =

τs
i

hi
g

�
Vi

τs
i

	
, (5)

respectively. Notice that es
i is convex with respect to τs

i .
Similarly, the time, power and energy spent on offloading the
task data for the ith task are denoted as

τu
i =

Oi−1

Ru
i

, pu
i =

1
hi
g

�
Oi−1

τu
i

	
,

eu
i = pu

i τ
u
i =

τu
i

hi
g

�
Oi−1

τu
i

	
, (6)

respectively. When both the task data and program data are
offloaded to the edge, we assume that they are jointly encoded
in one packet to reduce the packet header overhead. Accord-
ingly, the edge server only starts initializing the program after
receiving and decoding the whole packet. It can be easily
verified that the time and energy consumed on transmitting
both the program and task data of length (Vi +Oi−1) are
merely the sum of the corresponding two parts in (4)-(6).

Furthermore, the time consumed on downloading the input
data of the ith task for local computation is τd

i = Oi−1

Rd
i

, where

Rd
i = B̄ log2

�
1 + P0hi

σ̄2

�
denotes a given downlink data rate

for the ith task when the server transmits using fixed power
P0 and downlink bandwidth B̄ under downlink receiver noise
power σ̄2.

B. Performance Metric

The key performance metric considered in this paper is the
total computation time and energy cost (TEC) of the MU.
In particular, the total computation time consists of two parts.
The first part is the task execution time of the M tasks, which
can be expressed as

T exe =
�M+1

i=1



(1 − ai) τ l

i + aiτ
c
i

�
. (7)

The two terms correspond to the processing delay that a task is
executed locally and at edge server, respectively. The second
part, denoted as T pre, is the time spent on preparing for
the program and task data before task execution, i.e., data
transmission and program generation. Consider a tagged task
i, we discuss the preparation time in the following cases.

1) Case 1 (ai−1 = 0 and ai = 0): In this case, the two
consecutive tasks are computed locally, which incurs no
delay on either program or task data transmission.

2) Case 2 (ai−1 = 0 and ai = 1): In this case, it takes
τu
i amount of time to offload the task data to the

edge. Meanwhile, program data uploading and program
generation are needed if the program for computing the

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on September 02,2020 at 04:56:38 UTC from IEEE Xplore.  Restrictions apply. 



4952 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 7, JULY 2020

ith task is not in the cache. Mathematically, the delay
overhead in offloading and initializing the program is

τo
i � (Wi + τs

i )
�N

j=1
(1 − xi,j)ui,j . (8)

Overall, the preparation time is τu
i + τo

i .
3) Case 3 (ai−1 = 1 and ai = 0): Only the computation

output of the previous task needs to be downloaded to
the MU. Accordingly, the time consumed is τd

i .
4) Case 4 (ai−1 = 1 and ai = 1): The input task data of

the ith task is already available after the computation
of the previous task. Thus, the preparation time is the
time needed for program data transmission and program
generation, if the program data is not in the service
cache. In other words, the time consumed is τo

i .

From the above analysis, we have

T pre =
�M+1

i=1



(1−ai−1) aiτ

u
i + ai−1 (1 − ai) τd

i + aiτ
o
i

�
,

where a0 = aM+1 = 0 by definition. Therefore, the total
computation delay of the M tasks is

T = T exe + T pre

=
�M+1

i=1

�
(1 − ai−1) aiτ

u
i + ai−1 (1 − ai) τd

i

+ (1 − ai) τ l
i + aiτ

o
i + aiτ

c
i


. (9)

Meanwhile, the energy consumption of the MU is

E =
�M+1

i=1



(1 − ai) el

i + (1 − ai−1) aie
u
i + aie

o
i

�
, (10)

where eo
i = es

i

�N
j=1(1 − xi,j)ui,j denotes the energy con-

sumed on uploading the program data for the ith task. The
other two terms correspond to the energy consumed on local
computation and task data offloading, respectively. The perfor-
mance metric TEC is the weighted sum of the two objectives,
i.e., TEC = βT + (1 − β)E, where β ∈ [0, 1] is a weighting
parameter.

III. JOINT CACHING PLACEMENT AND COMPUTATION

OFFLOADING OPTIMIZATION

In this section, we formulate a joint optimization of resource
allocation, caching placement and computation offloading
decisions to minimize the TEC. We first derive the closed-form
expressions of the optimal resource allocation. Accordingly,
we show that (P2) can be equivalently transformed into a pure
binary ILP problem, which can be handled by off-the-shelf
algorithms.

A. Problem Formulation

In this paper, we are interested in minimizing the TEC of the
MU by jointly optimizing the task offloading decision a, the
computational caching decision X, and the system resource
allocation {f , τ ,p}. Here, f = {fi}, τ =

�
τ l
i , τ

u
i , τ

s
i

�
, p =

{pu
i , p

s
i }. That is, we solve

(P1) : minimize
a,X,f ,τ ,p

βT + (1 − β)E (11a)

subject to (2), (3), (11b)

0 ≤ pu
i , p

s
i ≤ Pmax, ∀i, (11c)

0 ≤ fi ≤ fmax, ∀i, (11d)

τ l
i , τ

u
i , τ

s
i ≥ 0, ∀i, (11e)

ai, xi,j ∈ {0, 1}, ∀i, j. (11f)

Notice that T and E are non-linear functions of the optimizing
variables, with the detailed expressions given in (9) and
(10), respectively. (11b) corresponds to the caching causality
and capacity constraints. (11c) and (11d) correspond to the
maximum transmit power and CPU frequency of the MU.
From (1), there is a one-to-one mapping between τ l

i and fi.
Besides, pu

i is uniquely determined by τu
i in (6), and ps

i is
uniquely determined by τs

i in (5). By substituting {f ,p} with
τ , we can equivalently express (P1) as

(P2) : minimize
a,X,τ

βT + (1 − β)E

subject to (2), (3),
ai, xi,j ∈ {0, 1}, ∀i, j,
τ l
i ≥ Li

fmax
, i = 1, · · · ,M,

τu
i ≥ Oi−1

Rmax
i

, i = 1, · · · ,M,

τs
i ≥ Vi

Rmax
i

, i = 1, · · · ,M, (12)

where Rmax
i = B log2

�
1 + hiPmax

σ2

�
is a parameter. Problem

(P2) is a mixed integer non-linear programming (MINLP),
which lacks of efficient algorithm in its current form. In the
following, we show that the problem can be equivalently
transformed into a pure 0-1 integer linear programming (ILP).

B. Optimal Resource Allocation

A close observation of (P2) shows that the feasibility set
of the binary variables {a,X} is not related to the resource
allocation variables τ . Meanwhile, for any feasible {a,X},
the optimal τ ∗ is not related to {a,X}, and thus can be
separately optimized. Intuitively, this is because we can always
decrease the objective by minimizing the energy and com-
putation delay cost incurred by each task, regardless of the
caching placement solution X and offloading decision a. After
plugging the optimal τ ∗ back to (P2) and performing some
simple manipulations, (P2) can be equivalently written as the
following problem:

(P3): minimize
a,X

�M+1

i=1
ρi

subject to (2), (3), ai, xi,j ∈ {0, 1}, ∀i, j, (13)

where

ρi � o∗i (1−ai−1) ai+l∗i (1−ai)+s∗i ai

�N

j=1
(1−xi,j)ui,j

+ βai−1 (1 − ai) τd
i +βaiτ

c
i ,
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and {o∗i , l∗i , s∗i }’s are parameters obtained by optimizing the
resource allocation variables τ . Specifically, o∗i is obtained by
optimizing τu

i as follows,

o∗i = minimize
τu

i

βτu
i + (1 − β)

τu
i

hi
g

�
Oi−1

τu
i

	
(14a)

subject to τu
i ≥ Oi−1

Rmax
i

, (14b)

for i = 1, · · · ,M + 1. Likewise, l∗i is obtained by optimizing
τ l
i as follows,

l∗i = minimize
τ l

i

βτ l
i + (1 − β)κ

(Li)α

(τ l
i )α−1

(15a)

subject to τ l
i ≥ Li

fmax
, (15b)

for i = 1, · · · ,M+1. In addition, s∗i is obtained by optimizing
τs
i as follows,

s∗i = minimize
τs

i

βWi + βτs
i + (1 − β)

τs
i

hi
g

�
Vi

τs
i

	
(16a)

subject to τs
i ≥ Vi

Rmax
i

, (16b)

for i = 1, · · · ,M + 1. In other words, the optimization
of the vector τ can be decomposed into individual scalar
optimization problems. The following Proposition 1 derives
the closed-form expression of the optimal solution (τu

i )∗

to (14).
Proposition 1: The optimal solution τu

i is

(τu
i )∗=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Oi−1

Rmax
i

, if hi ≤ η,

ln 2 ·Oi−1

B ·
�
W

�
e−1

�
βhi

(1−β)σ2 − 1
�

+ 1
 , otherwise,

(17)

where η � σ2

Pmax

�
A

−W(−A exp(−A)) − 1
�

and A = 1 +
β

(1−β)Pmax
are fixed parameters. W(x) denotes the Lambert-W

function, which is the inverse function of J(z) = z exp(z) =
x, i.e., z = W(x).

Proof: Please see the detailed proof in Appendix A. �
Because W(x) > −1 when x > −1/e, the denominator in

the second term of (17) (and thus (τu
i )∗) is always positive.

Similar to the proof in Proposition 1, the optimal (τs
i )∗

to (16) is

(τs
i )∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Vi

Rmax
i

, if hi ≤ η,

ln 2 · Vi

B ·
�
W

�
e−1

�
βhi

(1−β)σ2 − 1
�

+ 1
 , otherwise.

(18)

Meanwhile, the optimal solution
�
τ l
i

�∗
to (15) can be obtained

by calculating the derivative of the objective and considering

the boundary condition, as follows

�
τ l
i

�∗
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Li

fmax
, if fmax ≤

�
β

κ (1 − β) (α− 1)

	 1
α

,�
κ (1 − β) (α− 1)

β

	 1
α

Li,

otherwise.
(19)

When the optimal τ ∗ is obtained, the optimal {f∗,p∗} in (P1)
can be retrieved accordingly from (1), (5) and (6).

Remark 1: For the offloaded tasks, when hi is weaker
than the fixed threshold in (17), the MU should transmit
at maximum power (pu

i )∗ = Pmax (or equivalently at the
maximum data rate Rmax

i ) to minimize the offloading time.
Otherwise, when hi is stronger than the threshold, the MU
offloads for a shorter time (τu

i )∗ when hi increases, because
W (x) is an increasing function when x > −1/e. Similar
results can also be obtained for (τs

i )∗ and (ps
i )

∗ from (18).
For the tasks computed locally, the optimal solution

�
τ l
i

�∗
in

(19) shows that the MU should compute faster either when
a larger weight β is assigned to the delay cost or when the
local computation is more energy-efficient (small κ). When
β is sufficiently large or κ is sufficiently small, the MU
should compute at a maximum speed fmax to minimize the
computation delay.

C. Equivalent ILP Formulation

Given the fixed parameters {o∗i , l∗i , s∗i } in (P3), the problem
is a quadratic integer programming problem due to the multi-
plicative terms. To further simplify the problem, we introduce
two sets of auxiliary variables zi � aixi,ϕi and bi � aiai−1

for i = 1, · · · ,M . Recall that ϕi denotes the service type of
the ith task. Accordingly, we re-express (P3) as

minimize
a,b,z,X

M�
i=1

�
o∗i + βτc

i + βτd
i+1 + s∗i − l∗i

�
ai (20a)

−
M�
i=2

�
o∗i + βτd

i

�
bi −

M�
i=2

s∗i zi +
M�
i=1

l∗i ,

(20b)

subject to bi ≤ 1
2

(ai−1 + ai), i = 1, · · · ,M, (20c)

zi ≤ 1
2

(ai + xi,ϕi), i = 1, · · · ,M, (20d)

(2), (3), ai, bi, zi, xi,j ∈ {0, 1}, ∀i, j. (20e)

Constraint (20c) forces bi to be zero if either ai−1 or ai is
zero. Otherwise, if ai−1 = ai = 1, bi = 1 must hold at the
optimum because the objective is decreasing in bi. Therefore,
bi = aiai−1 holds at the optimum when constraint (20c) is
satisfied. Similar argument also applies to constraint (20d).
Overall, the above problem is a standard 0-1 ILP problem,
which can be handled by standard exact algorithms, e.g.,
branch and bound method [29]. Notice that the problem has
M(N + 3) binary variables. The worst-case complexity of
branch-and-bound method, as well as many other well-known
exact algorithms for ILP, grows exponentially with the number
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Fig. 2. An example task offloading decision. The rows represent the service
types (N = 3) and the columns represent the task indices (M = 12). For
instance, the 1st task is type-2 and the 2nd task is type-1. A solid square
indicates the task is computed at the edge (i.e., ai = 1, such as task 6),
and a dashed square indicates local computing (i.e., ai = 0, such as task 2).
The variable below each solid box is the corresponding caching placement
variable xi,j . The red lines illustrate the index sets V8 = {5, 6, 7, 8} and
V10 = {7, 8, 9, 10} in Definition 2.

of binary variables. Therefore, the complexity of solving (P3)
can still be high when either M or N is large, e.g., taking
several minutes to compute when M equals several hundred.
To reduce the complexity of solving a large-size ILP in
real implementation, we investigate in the following sections
an alternating minimization heuristic, where service caching
placements and offloading decisions are optimized separately
and iteratively.

IV. OPTIMAL SERVICE CACHING PLACEMENT

A. Structure of the Caching Causality

In this section, we assume a feasible offloading decision a
is given in (P3) and optimize the service caching placement
X. By eliminating the unrelated terms, (P3) reduces to

(P4): maximize
X∈{0,1}M×N

�
i∈A s

∗
i xi,ϕi (21a)

subject to (2), (3), (21b)

where A denotes the index set of offloading tasks. For
example, A = {1, 3, 4, 5, 6, 8, 9, 10, 11, 12} in Fig. 2. There
are in total MN integer variables in (P4). However, as we
show below, it is sufficient to optimize only the caching
placement for the offloading tasks, i.e., {xi,ϕi |i ∈ A}, while
the other variables are redundant. Let us first introduce the
following two definitions to establish the caching causality of
consecutive tasks.

Definition 1: Let νj
i = {mink≥i k|uk,j = ak = 1} denote

the index of the next type-j task that is offloaded for edge
execution since the execution of the ith task. In particular,
νj

i = i if ui,j = ai = 1, and νj
i = ∅ when no such task exists.

For instance, ν1
11 = ∅, ν2

11 = 11, and ν3
11 = 12 in Fig. 2.

Definition 2: For a task k ∈ A of service type ϕk, we denote
Vk = {i | νϕk

i = k, i = 1, · · · , k} as the index set of consec-
utive preceding tasks that satisfy νϕk

i = k. That is, νϕk

i = k
holds for |Vk| consecutive tasks from task i = k− |Vk|+1 to
task k, where |Vk| denotes the cardinality of Vk. For instance,
V8 = {5, 6, 7, 8}, V9 = {9}, and V10 = {7, 8, 9, 10} in Fig. 2.

We first show that we can safely set some variables xi,j = 0
without affecting the optimal value of (P4). Recall that νj

1

denotes the index of the first type-j task that is offloaded for
edge execution (if any), e.g., ν1

1 = 6, ν2
1 = 1, and ν3

1 = 3
in Fig. 2. By our assumption that the cache is initially empty,
it holds from the caching causality constraint (2) that xνj

1 ,j =

0, j = 1, · · · , N . In Fig. 2, for instance, x6,1 = x1,2 =
x3,3 = 0. Besides, notice that for any xi,j satisfying νj

i = ∅
(such as x11,1), there is no type-j task offloaded for edge
execution afterwards. Thus, we can simply set xl,j = 0, for
l ≥ i, without affecting the optimal value of (P4). For instance,
we can set x11,1 = x12,1 = x12,2 = 0 in Fig. 2. In this sense,
we consider in the following only those variables xi,j ’s that
satisfy νj

i �= ∅, i.e., {xi,ϕk
| ∀k ∈ A, ∀i ∈ Vk}. The following

Proposition 2 proves that many of the remaining variables are
redundant and can be removed from (P4).

Proposition 2: Suppose that X̂ = {x̂i,j} is a feasible
solution of (P4), we can construct another feasible solution
X̄ = {x̄i,j} by setting x̄i,ϕk

= x̂k,ϕk
, ∀k ∈ A and ∀i ∈ Vk.

Meanwhile, the objective values of (P4) are the same with X̂
and X̄.

Proof: Please see the detailed proof in Appendix B. �
Remark 2: Proposition 2 indeed shows that only

{xk,ϕk
| ∀k ∈ A} are independent variables, while the rest

of the variables {xi,j} in (P4) are dependent variables and
redundant. For a tagged offloading task k ∈ A, by replacing
xi,ϕk

with xk,ϕk
, ∀i ∈ Vk in (P4), we remove not only the

dependent variables in Vk, but also the redundant constraints
in (2) for i ∈ Vk and j = ϕk. Furthermore, by considering
all k ∈ A, we remove all dependent variables and all the
constraints in (2) without affecting the optimal value of (P4).

Take Fig. 2 as an example. We can intuitively visualize the
variable replacements derived from Proposition 2. That is, each
caching placement variable xi,j corresponding to a blank slot
(e.g., x7,2) or a dashed square (e.g., x7,1) can be equivalently
replaced by that corresponding to the next solid square in the
same row (e.g., by x8,2 and x10,1, respectively). For instance,
we can replace {x7,1, x8,1, x9,1} by x10,1 while achieving the
same optimal value of (P4). The replacement also removes the
constraints in (2) for i = 7, 8, 9, 10 and j = 1.

Following the variable replacement technique proposed in
Proposition 2, (P4) is equivalently transformed to the following
problem

(P4-Eq) : maximize
xi,ϕi

,∀i∈A

�
i∈A s

∗
i xi,ϕi (22a)

subject to xi,ϕi ∈ {0, 1}, ∀i ∈ A, (22b)

xνj
1 ,j = 0, j = 1, · · · , N, (22c)�N

j=1
cj · xνj

i ,j ≤ C, ∀i. (22d)

Notice that the above problem (P4-Eq) is a standard multidi-
mensional knapsack problem (MKP) [30]. Compared to (P4),
the number of binary variables is reduced from MN to only
|A| ≤M . Besides, as we will illustrate in the next subsection,
many constraints in (22d) are duplicated or redundant. When
there is more than one effective constraint in (P4-Eq), there
does not exist a fully polynomial-time approximation scheme
(FPTAS) [30]. However, for MKP problems of moderate size,
plenty of algorithms include hybrid dynamic programming
and branch-and-bound methods can be applied to solve for
the exact optimal solution in a reasonable computation time,
e.g., within 0.1 second of computation time for over 500
variables [36].
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B. Optimal Caching Placement: A Case Study

In this subsection, we use the example in Fig. 2 to illustrate
the problem transformation from (P4) to (P4-Eq). We first
apply the above variable replacement technique to the M con-
straints in (3) of (P4) one by one to construct the corresponding
M constraints in (22d) of (P4-Eq). Starting from the first
constraint in (22d), we note that

�
ν1
1 , ν

2
1 , ν

3
1

�
= {6, 1, 3}, and

thus focus on variables {x6,1, x1,2, x3,3}. Because the service
cache is assumed empty initially, we have x6,1 = x1,2 =
x3,3 = 0. Therefore, the first constraint in (22d) of (P4-Eq) is
unnecessary. The second constraint in (22d) can be expressed
as C2 : c2x4,2 ≤ C because ν2

2 = 4. After applying the similar
variable replacement procedure to constraint i = 3, · · · , 12,
we obtain the M constraints of (P4-Eq), which however
contain duplicated or redundant constraints. For instance, C2 is
redundant due to the assumption that C ≥ ci, ∀i. Meanwhile,
it can be easily verified that the 3rd constraint C3 in (22d) is
the same as C2. In addition, for the 6th and 7th constraints
in (22d), we have

C6 : c2x8,2 + c3x12,3 ≤ C,

C7 : c1x10,1 + c2x8,2 + c3x12,3 ≤ C,

where C6 is evidently redundant if C7 is satisfied.
After removing all the duplicated/redundant constraints,

(P4-Eq) becomes

maximize
xi,ϕi

,∀i∈Ā

�
i∈Ā

s∗i xi,ϕi

subject to xi,ϕi ∈ {0, 1}, ∀i ∈ Ā,
C4 : c2x4,2 + c3x5,3 ≤ C,

C5 : c2x8,2 + c3x5,3 ≤ C,

C7 : c1x10,1 + c2x8,2 + c3x12,3 ≤ C,

C9 : c1x10,1 + c2x9,2 + c3x12,3 ≤ C,

C10 : c1x10,1 + c2x11,2 + c3x12,3 ≤ C, (23)

where Ā � {4, 5, 8, 9, 10, 11, 12} denotes the indices of
the remaining offloading tasks. Compared with its original
formulation in (P4), the numbers of binary variables are
reduced from MN = 36 to 7, the number of caching
capacity constraints is reduced from M = 12 to 5, and all
the caching causality constraints are removed. Besides, the
original generic ILP is converted to a standard 0-1 MKP, where
many specialized exact and approximate solution algorithms
are available.

After solving (23) optimally, we can easily retrieve the
solution in (P4) by Proposition 2. For example, for the
2nd program, the optimal solutions can be retrieved from�
x∗4,2, x

∗
8,2, x

∗
9,2, x

∗
11,2

�
as x∗2,2 = x∗3,2 = x∗4,2, x∗5,2 = x∗6,2 =

x∗7,2 = x∗8,2, x∗10,2 = x∗11,2, while x∗i,2 = 0 for the rest task
i. The optimal solution of x∗i,1’s and x∗i,3’s can be similarly
obtained. As an illustrating example, suppose that Fig. 3(a)
is the optimal caching solution to (P4-Eq) for the example
in Fig. 2, Fig. 3(b) shows the corresponding optimal caching
placement solution to (P4).

Fig. 3. (a). An example optimal solution to (P4-Eq) adapted from Fig. 2,
where a red (black) box indicates x∗

i,j = 1 (0); (b). The retrieved caching
solution to (P4); (c). The caching state derived from the caching solution.
A shaded (empty) box indicates xi,ϕi

= 1 (0).

V. OPTIMAL TASK OFFLOADING DECISION

In this section, we optimize the task offloading decision a
given a caching placement decision X in (P3). Interestingly,
we find that the only difficulty lies in optimizing the offloading
decisions of the “uncached" tasks, which effectively reduces
the number of binary variables.

A. Reduced-Complexity Decomposition Method

Notice that once X is given, (P3) is reduced to

minimize
a

�M+1

i=1

�
o∗i (1 − ai−1) ai + l∗i (1 − ai) (24a)

+ (λ∗i + βτc
i ) ai + βτd

i ai−1 (1 − ai)
�

(24b)

subject to ui−1,jai−1 ≥ xi,j − xi−1,j , ∀i, j, (24c)

ai ∈ {0, 1}, i = 1, · · · ,M, (24d)

where a0 = 0 and aM+1 = 0. Here, λ∗i in the objective is
a parameter determined by the value of xi,ϕi , where λ∗i = 0
if xi,ϕi = 1 and λ∗i = s∗i if xi,ϕi = 0, for i = 1, · · · ,M +
1. We assume without loss of generality that problem (24)
is feasible given the caching placement X.3 In the following
Lemma 1, we reveal an interesting structure of the feasible
solutions of (24) to simplify the problem.

Definition 3: With a given X, we refer to a block of
consecutive tasks with xi,j = 1 for a specific program j as a
run. Beside, we denote the index set of the first task of each
run as S, i.e., S = {i|xi,j > xi−1,j , ∀i, j}. For instance, there
are in total 3 runs in Fig. 3(b) (red boxes) and S = {2, 4, 7}.

Lemma 1: With the given X in (24), a necessary and
sufficient condition for an offloading decision a ∈ {0, 1}M

being a feasible solution of (24) is that ai−1 = 1, ∀i ∈ S.
Proof: Please see the detailed proof in Appendix C. �

3The feasibility of (24) can be guaranteed in the alternating minimization
method proposed in Section V-C.
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From Lemma 1, we can equivalently replace all the con-
straints in (24c) with ai−1 = 1, ∀i ∈ S, which essentially
removes |S| variables as well as all the MN constraints
in (24c). Then, we introduce auxiliary variables bi = ai−1ai,
i = 1, · · · ,M , as in (20), which transforms (24) to the
following ILP:

minimize
a,b

�M

i=1

�
o∗i + λ∗i + βτc

i + βτd
i+1 − l∗i

�
ai

−
�M

i=1

�
o∗i + βτd

i

�
bi +

�M

i=1
l∗i ,

subject to bi ≤ 1
2

(ai−1 + ai), i = 2, · · · ,M,

ai, bi ∈ {0, 1}, i = 1, · · · ,M,

ai−1 = 1, ∀i ∈ S. (25)

In general, the problem has 2M − |S| binary variables.
In the following, we study the properties of optimal offloading
decisions to further reduce the complexity of solving the ILP
in (24).

Recall that the value of parameter xi,ϕi represents whether
the program for computing the ith task is already in the
service cache, where i = 1, · · · ,M . Specifically, we refer
to the ith task with xi,ϕi = 1 as a cached task, and an
uncached task otherwise. To facilitate illustration, we set
x0,ϕ0 = 1 and xM+1,ϕM+1 = 0 for the two virtual tasks
without affecting both the objective and constraints of (24).
As an illustrative example in Fig. 3(c), the caching state
vector



x0,ϕ0 , x1,ϕ1 , · · · , xM+1,ϕM+1

�
consists of alternating

patterns of consecutive 0’s and 1’s. Here, we refer to a block
of consecutive tasks with xi,ϕi = 1 as a cached segment,
and a block of consecutive tasks with xi,ϕi = 0 as an
uncached segment, such as the three cached segments and three
uncached segments in Fig. 3(c). In particular, these M+2 tasks
always start with a cached segment and end with an uncached
segment. Therefore, the numbers of cached and uncached
segments are always the same and are denoted by K ≥ 1.
In the following, we separate our discussions according to
the value of K .

1) K = 1: Note that x1,ϕ1 = 0 always holds because the
service cache is assumed empty initially. Therefore, the first
cached segment always has only one task (i.e., task 0). K = 1
indicates that xi,ϕi = 0 for i = 1, · · · ,M + 1. This indeed
is the most difficult case in that we need to solve a general
ILP by setting λ∗i = s∗i for all i = 1, · · · ,M in (25) without
any improvement on computational complexity. In practice,
however, this case rarely occurs when a proper initial caching
placement is set.

2) K > 1: In this case, there exists some cached task i
for 1 < i ≤ M . We denote ek and uk as the indices of
the uncached tasks preceding and following the kth cached

Fig. 4. Optimal offloading decision given the values of aek and auk .

segment, respectively, while e1 is not defined. For instance,
u1 = 1, {e2, u2} = {3, 6} and {e3, u3} = {6, 11} in Fig. 3(c).
Notice that uk = ek+1 may occur when there is only one task
in an uncached segment, such as u2 = e3 = 6. For simplicity
of illustration, we denote

ψi = o∗i (1 − ai−1) ai + l∗i (1 − ai)
+ (λ∗i + βτc

i ) ai + βτd
i ai−1 (1 − ai),

such that the objective of (24) is expressed as
�M+1

i=1 ψi. Alter-
natively, the objective of (24) can be decomposed based on
{ek, uk}’s, such that problem (24) can be recast as following

minimize
a∈{0,1}M

�K

k=1
(φk,1 + φk,0) (26a)

subject to ai−1 = 1, ∀i ∈ S, (26b)

where φk,1 and φk,0 are expressed in (27) and (28) respectively
as shown at the bottom of this page. Intuitively, φk,1 and
φk,0 correspond to the TEC induced by the kth cached and
uncached segments, respectively. Besides, the sets of optimiz-
ing variables in φk,1 and φk,0 are

Ak,1 =

�
a1, k = 1,
{ai|i = ek, ek + 1, · · · , uk}, k = 2, · · · ,K,

and Ak,0 = {ai|i = uk, uk + 1, · · · , ek+1}, k = 1, · · · ,K.
A closer observation of Ak,1 and Ak,0 shows that once

the values of {aek
, auk

}’s are fixed, for i = 1, · · · ,K , φk,1’s
and φk,0’s can be separately optimized with disjoint sets
of variables. In the following, we first discuss the optimal
offloading decisions of the cached tasks that minimize φk,1’s.
Without loss of generality, we focus on the kth cached
segment, supposing that {aek

, auk
} are given. Depending on

the values of {aek
, auk

}, there are four cases, as illustrated in
Fig. 4.

φk,1 =

⎧⎨
⎩
o∗1a1, k = 1,�uk−1

i=ek+1
ψi +



o∗uk

(1 − auk−1) auk
+ βτd

uk
auk−1 (1 − auk

)
�
k = 2, · · · ,K, (27)

φk,0 =


l∗uk

(1 − auk
) +

�
λ∗uk

+ βτc
uk

�
auk

�
+

�ek+1

i=uk+1
ψi, k = 1, · · · ,K. (28)
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1) aek
= auk

= 1, as shown in Fig. 4(a). In this case,
the optimal offloading solution is ai = 1, for i = ek +
1, · · · , uk − 1. That is, all the cached tasks are executed
at the edge server. Due to the page limit, we only provide
a sketch of proof here, by contradiction. Suppose that
tasks i to j are computed locally instead of at the edge
in Fig. 4(a). This will incur not only additional time and
energy for downloading (uploading) the input (output) of
the ith (jth) task, but also additional time and energy for
local computation, because f0 > fmax and the energy
consumption on edge computation is neglected.

2) aek
= 0 and auk

= 1, as shown in Fig. 4(b). For the
optimal offloading decision, there must exist an optimal
task i∗ ∈ {ek + 1, · · · , uk − 1}, such that for each i =
ek + 1, · · · , uk − 1, we have a∗i = 0 if i < i∗ and
a∗i = 1 if i ≥ i∗. This indicates that the computation is
offloaded to the edge exactly once within the segment.
The proof follows that in the first case and is omitted
for brevity. In particular, i∗ can be found via a simple
linear search.

3) aek
= 1 and auk

= 0, as shown in Fig. 4(c). For the
optimal offloading decision, there must exist an optimal
task j∗ ∈ {ek + 1, · · · , uk − 1}, such that for each i =
ek + 1, · · · , uk − 1, we have a∗i = 1 if i < j∗ and
a∗i = 0 if i ≥ j∗. The proof also follows the idea in the
first case. This indicates that the computation result is
downloaded to the MU exactly once within the segment.
In particular, j∗ can be found using a linear search.

4) aek
= auk

= 0, as shown in Fig. 4(d), implying that
the computations start and end both at the MU. This
corresponds to the case in [26], which shows that the
optimal computation offloading strategy satisfies a “one-
climb" policy where the tasks are either offloaded to the
edge server for exactly once, or all executed locally at
the MU. There must exist i∗ ≤ j∗, such that the optimal
solution of ai, i = ek + 1, · · · , uk − 1, is

a∗i =

�
0, i < i∗ or i ≥ j∗,
1, i∗ ≤ i < j∗.

(29)

The optimal {i∗, j∗} can be efficiently obtained through
a two-dimensional search.

From the above discussion, the optimal value φk,1 under
the above four cases can be efficiently obtained. Let us
denote the optimal values by v

(1)
k , v(2)

k , v(3)
k , and v

(4)
k for

the four cases, respectively. Moreover, the calculations of�
v
(1)
k , v

(2)
k , v

(3)
k , v

(4)
k

�
’s can be performed in parallel for dif-

ferent segments. This way, φk,1 can be expressed as

φk,1 = v
(1)
k aek

auk
+ v

(2)
k (1 − aek

) auk

+ v
(3)
k aek

(1 − auk
) + v

(4)
k (1 − aek

) (1 − auk
). (30)

By substituting (30) into (26), we eliminate all the offloading
decision variables corresponding to the cached tasks, and leav-
ing only the variables for the uncached tasks, i.e., {ai|xi,ϕi =
0, i = 1, · · · ,M}. In the following, we transform (26) into an
equivalent ILP problem.

B. Equivalent ILP Formulation

The basic idea is similar to that for (P3) in Section III-C,
where the new challenge is in the multiplicative terms in (30).
By denoting âi � 1−ai, where âi ∈ {0, 1}, we rewrite (30) as

φk,1 = v
(1)
k aek

(1 − âuk
) + v

(2)
k (1 − aek

) auk

+ v
(3)
k aek

(1 − auk
) + v

(4)
k (1 − aek

) âuk
. (31)

We further define qk � aek
auk

and q̂k � aek
âuk

, and express
the above equation as

ωk,1 �
�
v
(1)
k + v

(3)
k

�
aek

+ v
(2)
k auk

+ v
(4)
k âuk

−
�
v
(1)
k + v

(4)
k

�
q̂k −

�
v
(2)
k + v

(3)
k

�
qk. (32)

By substituting (32) into (26) and introducing auxiliary vari-
ables bi = ai−1ai, we have

minimize
a,â,b,q,q̂

�K

k=1
(ωk,1 + φk,0) (33a)

subject to ai−1 = 1, ∀i ∈ S, (33b)

bi ≤ 1
2

(ai−1 + ai), (33c)

∀i ∈ Ak,0 \ uk, k = 1, · · · ,K, (33d)

qk ≤ 1
2

(aek
+ auk

), k = 2, · · · ,K, (33e)

q̂k ≤ 1
2

(aek
+ âuk

), k = 2, · · · ,K, (33f)

âuk
+ auk

= 1, k = 2, · · · ,K, (33g)

ai, âi, bi, qk, q̂k ∈ {0, 1}, ∀i, k. (33h)

We see that the inequalities (33c) to (33f) are equivalent
to bi = ai−1ai, qk = aek

auk
, and q̂k = aek

âuk
, respec-

tively, because the objective decreases with {bi, qk, q̂k}’s.
Similar to (25), the problem above is also a pure 0-1
integer optimization problem. Compared to (25), it reduces
2|A1| variables that correspond to the cached tasks, where
A1 = {i|xi,ϕi = 1, i = 1, · · · ,M}, while introducing addi-
tional 3(K − 1) auxiliary variables. In general, the above
formulation can effectively reduce the computational com-
plexity because |A1| is often much larger than K in practice.
To see this, we plot in Fig. 5 the average number of cached
tasks (|A1|) and segments (K) when solving (33) during the
execution of the alternating minimization (to be introduced
in the next subsection), where the former is more than 4
times larger than the latter for all M . The complexity of
the alternating minimization will be evaluated numerically in
Section VI.B.

C. Alternating Minimization

Sections IV-A and V-A show that we can compute the
optimal caching placement X∗ with low complexity when
the offloading decision a is given, and vice versa. This leads
to an alternating minimization scheme that optimize the two
set of variables X and a alternately. Starting from an initial
a(0), we iteratively compute the optimal X(i) given a(i−1)

(by solving (P4)), and the optimal a(i) given X(i) (by solving
problem (24)) for i = 1, 2, · · · , until the improvement on
the objective function of (P3) becomes marginal. Because the
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Fig. 5. The average number of segments K and cached tasks |A1| when
solving (33) during the alternating minimization under different number of
tasks M . The simulation parameters are in Table I.

TABLE I

SIMULATION PARAMETERS

objective of (P3) is bounded below and non-increasing as
the iterations proceed, the alternating minimization method is
asymptotically convergent. The detailed algorithm description
is omitted for brevity.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
algorithms through numerical simulations. All the computa-
tions are solved in MATLAB on a computer with an Intel
Core i7-4790 3.60-GHz CPU and 16 GB of memory. Besides,
we use Gurobi optimization tools to solve the ILP prob-
lems [37]. In all simulations, we assume that the average chan-

nel gain h̄i follows a path-loss model h̄i = Ad

�
3×108

4πfcdM

�de

,
i = 1, · · · ,M , where Ad denotes the antenna gain, fc denotes
the carrier frequency, de denotes the path loss exponent,
and dM denotes the distance between the MU and the edge
server. The time-varying fading channel hi follows an i.i.d.
Rician distribution with LOS link gain equal to 0.2h̄i. Unless
otherwise stated, the parameters used in the simulations are
listed in Table I, which correspond to a typical outdoor MEC
system. For simplicity of illustration, we assume that cj’s are
equal for all the programs, such that the caching capacity C is
normalized to indicate the number of programs that can cache.

Unless otherwise stated, all results in the simulations are the
average performance of 50 independent simulations. In each
simulation, we first randomly generate M tasks that belong

Fig. 6. The optimal energy-delay tradeoff of the joint optimization under
different values of β.

to N = 6 types of programs, where the types of the
sequential tasks follow a Markov chain with a random initial
state. Specifically, the Markov transition probability Pi,j �
Pr (ϕk+1 = j|ϕk = i) = 0.4 if i = j, and Pi,j = 0.12 if
i �= j, ∀i, j, k, where ϕk denotes the program type of the kth
task. Then, the parameters of each task (Oi and Li) and each
type of program (sj) are uniformly generated from the ranges
specified in Table I for i = 1, · · · ,M and j = 1, · · · , N .

In the following, we evaluate the performance of the pro-
posed optimal joint optimization (in Section III-C) and alter-
nating minimization (in Section V-C) methods. Specifically,
we initialize ai = 1 for all i in the alternating minimization.
Besides, we also consider the following benchmark methods
for performance comparison:

• Popular-cache: we first neglect the offloading decision
of the MU and cache the most popular programs that
are executed most frequently throughout the time. Then,
we optimize the offloading decision given the caching
placement using the method in Section V-B. This is
similar to the top-R caching method in [8] and Pop-aware
caching method in [38].

• Cache-oblivious offloading: we first neglect the edge
caching placement and optimize the offloading decisions
by assuming that the service programs for processing
all the tasks are available at the edge server. Then,
we optimize the caching placement based on the obtained
offloading decision using the method in Section IV-A.

A. TEC Performance Evaluation

We first examine the optimal performance tradeoff between
the two competing objectives in (P1), i.e., computation delay
T and energy consumption E of the MU, by varying the
weighting parameter β. As excepted, T decreases with β while
E increases. In particular, T first quickly decreases with β and
gradually becomes a constant when β ≥ 0.75. The curve can
be used to set proper value of β, e.g., setting β = 0.1 when
requiring the total energy consumption to be lower than 5 J.
Without loss of generality, we set β = 0.1 in the following
simulations.
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Fig. 7. TEC performance comparisons of different methods.

Fig. 8. Ratio of offloaded tasks when different methods are applied.

We then evaluate the TEC performance under different
system setups. In Fig. 7(a), we vary the program generation
time Dj from 0.5 to 4.5 seconds, which naturally results in
an increase of TEC for all the methods. The Cache-oblivious
method performs closely to the optimal scheme when Dj

is small, e.g., Dj ≤ 2, but its performance degrades as Dj

further increases. To examine the underlying cause, we plot in
Fig. 8(a) the ratio of offloaded tasks. As expected, the offload-
ing ratios of all methods decrease with the program generation
time. Meanwhile, we notice that the Cache-oblivious method
offloads almost all the tasks for edge execution under dif-
ferent Dj , which is consistent with the one-climb offloading
policy in [26]. As a result, the conserved computation time
and energy from edge computation is gradually exceeded by
the overhead due to frequent offloading/initialization of new
programs when Dj increases. The alternating minimization
method has a similar trend as the Cache-oblivious method,
because it is largely affected by the initial offloading solution
where all the tasks are offloaded to the edge. Besides, the TEC
performance of the Popular-cache method gradually converges
as Dj increases. This is because when Dj is large, a task
tends to be offloaded for edge execution only if its required
program is already cached. As popular-cache method has a
fixed caching placement throughout the time (C = 3 out of
the N = 6 programs are cached), its offloading ratio converges
to 0.5 when Dj is large and is verified in Fig. 8(a). This also
leads to a convergent TEC performance.

In Fig. 7(b) and Fig. 8(b), we vary the normalized caching
capacity from 2 to 6. Because a larger caching capacity trans-
lates to more savings in program offloading and generation,

the TEC decreases and the task offloading ratio increases
for all the schemes considered. Specifically, when C = 6,
i.e., all the programs can be stored in the cache, the Cache-
oblivious scheme approaches the optimal scheme. In Fig. 7(c)
and Fig. 8(c), we vary the path-loss factor de from 2 to 3,
which leads to a drastic decrease of wireless channel gains.
As expected, the weaker channels suffer lower offloading
ratio and higher TEC because the higher cost of transmitting
the task and program data discourages task offloading. The
proposed joint optimization has significant performance gain
over all the other schemes considered, especially when de

is large. Specifically, it reduces the TEC by more than 25%
compared with all the other schemes when de = 3.

At last, in Fig. 7(d) and Fig. 8(d), we vary the weighting
parameter β from 0.05 to 0.3, where a smaller (larger) β
indicates stronger emphasis on minimizing the energy con-
sumption (delay). We notice that the TEC increases with β
because the delay cost dominates the energy consumption
(e.g., one order of amplitude larger in Fig. 6 when β ≤ 0.3).
Meanwhile, the high program generation delay discourages
task offloading, leading to a decreased offloading ratio when
β increases. As a result, the Cache-oblivious scheme performs
the worst when β = 0.3 because of the high delay cost on
program generation at the edge server.

Overall, the optimal joint optimization scheme has evi-
dent TEC performance advantage over the others schemes.
The Cache-oblivious scheme performs well only when the
program generation time is short or under less stringent
delay requirement. The Popular-cache scheme performs poorly
in most cases due to its negligence to the task offloading
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Fig. 9. TEC performance comparison when the number of tasks varies.

Fig. 10. Comparison of CPU time when the number of tasks varies.

decisions. This is in contrast to the traditional content caching
schemes, where caching popular contents (e.g., large and most
frequently accessed files) usually performs well. The alter-
nating minimization has relatively good performance in most
scenarios. However, more tasks are offloaded than actually
required in the optimal solution.

We also compare in Fig. 9 the TEC Performance when the
number of tasks M varies. We observe that the TEC increases
linearly with M for all the schemes, while the optimal scheme
and the alternating minimization significantly outperforms the
others. In particular, the optimal scheme achieves on average
13.5% lower TEC than the alternating minimization method.
In the following, we evaluate the computational complexity of
the two best-performing schemes, i.e., the joint optimization
and the alternating minimization methods.

B. Complexity Evaluation

When the number of tasks M varies from 100 to 600,
we plot in Fig. 10 the average number of iterations used by
alternating minimization and the average CPU time compari-
son of the joint optimization and the alternating minimization

methods. The result is an average of 100 independent sim-
ulations. We see in Fig. 10(a) that the average number of
iterations of the alternating minimization method does not
vary significantly and is below 3 for all M . This is also one
important reason behind the slow increase of CPU time of
the alternating minimization method in Fig. 10(b), where the
CPU time increases slightly from 0.1 to 0.25 second when M
increases by 6 times. In vivid contrast, the CPU time of the
joint optimization method increases by more than 340 times
from 3.3 seconds to around 19 minutes. The quick increase of
CPU time may result in an unaffordable delay in practice when
M is large. In practice, the alternating minimization method
provides a reduced-complexity alternative.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we have considered a cache-assisted single-
user MEC system, where the server can selectively cache the
previously generated programs for future reuse. To minimize
the computation delay and energy consumption of the MU,
we studied the joint optimization of service caching placement,
computation offloading decisions, and system resource alloca-
tion. We first transformed the complicated MINLP problem to
a pure 0-1 ILP problem by separately deriving the closed-
form expressions of the optimal resource allocation. Then,
we proposed reduced-complexity algorithms to obtain the
optimal caching placement by fixing the offloading decision,
and vice versa. We further devised an alternating minimization
to update the caching placement and offloading decision alter-
nately. Extensive simulations show that the joint optimization
achieves substantial resource savings of the MU compared to
other representative benchmark methods considered. In partic-
ular, the sub-optimal alternating minimization method achieves
a good balance of system performance and computational
complexity.

Finally, we conclude the paper with some interesting future
working directions of service-cache assisted MEC. First, it is
interesting to consider dynamic resource allocation (on com-
puting, storage, and communication resource) in a general
multi-user MEC system to improve utilization efficiency.
In particular, the cached service programs from different MUs
may be shared to reduce the program uploading cost. This also
raises many new technical challenges, such as inter-user inter-
ference in task offloading and privacy issues in service sharing.
Secondly, it is also promising to extend the single-server setup
to a multi-server one. For instance, we may consider a two-
tier MEC network where some large-size computation tasks
are forwarded by local micro-BS edge server to more powerful
macro-BS server. Meanwhile, we can balance the computation
workloads at different edge servers by allowing multiple edge
servers to provide computing service collaboratively. Thirdly,
we assume in this paper a sequential task execution model.
Moving forward, it is of high practical value to study cache-
assisted computations under a general task execution model,
e.g., a tree or mesh model. Fourthly, it is worth studying
a scenario where the edge platform can download some
publicly accessible programs from the core network, such that
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it may pre-cache the service data beforehand to further reduce
computation delay. Fifthly, the cache update frequency of this
work is relatively high due to the dynamic task arrivals, e.g.,
on average once every 22.4 seconds of the optimal scheme
in the simulation. When cache switching cost is considered,
additional penalty terms need to be included in the objective to
reduce the update frequency. At last, we studied in this paper
an offline optimization problem that assumes the future system
parameters, such as the wireless channel gains and task data
size, are known beforehand. In practice, they may be revealed
only upon the task executions, thus an online design is needed.
Depending on the knowledge of future information, there are
numerous methods to design an online scheme. For instance,
when the channel and task arrival distributions are known,
we can apply dynamic programming technique to minimize
the expected cost. Otherwise, when they are unknown, we may
apply reinforcement learning technique [25] to directly learn
the optimal mapping between the caching/channel state to the
offloading and caching actions.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: We denote the objective of the problem as L(τu
i ),

which is a strictly convex function within the feasible set τu
i ≥

Oi−1
Rmax

i
≥ 0. Accordingly, the minimum is achieved at either the

boundary point Oi−1
Rmax

i
or the point v1 that satisfies L�(v1) =

0, depending on the value of v1. To obtain v1, we take the
derivative of L(τu

i ) and set it equal to zero, i.e.,

L�(τu
i )

= β +
(1 − β)σ2

hi

�
2

Oi−1
Bτu

i − 1 − ln 2 · 2
Oi−1
Bτu

i · Oi−1

Bτu
i

	

=
(1 − β)σ2e

hi

�
e−1

�
βhi

(1 − β)σ2
− 1

	

− e
ln 2

Oi−1
Bτu

i
−1

�
ln 2 · Oi−1

Bτu
i

− 1
	�

= 0,

⇒ e
ln 2

Oi−1
Bτu

i
−1

�
ln 2 · Oi−1

Bτu
i

− 1
	

= e−1

�
βhi

(1 − β)σ2
−1

	
.

(34)

Because e−1
�

βhi

(1−β)σ2 − 1
�

≥ −1, the above equality is
equivalent to

ln 2 · Oi−1

Bτu
i

− 1 = W
�
e−1

�
βhi

(1 − β)σ2
− 1

�	
, (35)

where W(x) denotes the Lambert-W function. Therefore,
we have v1 = ln 2·Oi−1

B·
�
W
�

e−1
�

βhi
(1−β)σ2 −1

��
+1

� .

If v1 <
Oi−1
Rmax

i
, or equivalently L�(τu

i ) = 0 is not achievable
within the feasible set, we can infer that the optimal solution
is obtained the boundary (τu

i )∗ = Oi−1
Rmax

i
. Because L(τu

i ) is
convex, L�(τu

i ) is an increasing function. Given L�(v1) = 0,

the condition v1 < Oi−1
Rmax

i
is equivalent to L�

�
Oi−1
Rmax

i

�
> 0.

By substituting τu
i = Oi−1

Rmax
i

into (34), we have v1 <
Oi−1
Rmax

i

when

β + (1 − β)Pmax

�
1 − ln (1 + qi)

�
1
qi

+ 1
	�

> 0

⇒ ln (1 + qi) ≤
�

1 +
β

(1 − β)Pmax

	 �
1 − 1

1 + qi

	

⇒ ln
�

1
1 + qi

	
≥ −A+

A

1 + qi
, (36)

where qi � hiPmax

σ2 and A � 1 + β
(1−β)Pmax

. By taking a
natural exponential operation at both sides of (36), we have

exp
�
− A

1 + qi

	 �
1

1 + qi

	
≥ exp (−A)

⇒ exp
�
− A

1 + qi

	 �
− A

1 + qi

	
≤ −A exp (−A).

Evidently, the RHS of the above inequality satisfies e−1 ≤
−A exp (−A) ≤ 0. Then, the above inequality can be equiv-
alently expressed as

− A

1 + qi
≤ W (−A exp (−A)). (37)

The equivalence holds because W(x) is an increasing function
when x ≥ −1/e. After some simple manipulation, we obtain
from (37) that the optimal solution (τu

i )∗ = Oi−1
Rmax

i
when

hi ≤ σ2

Pmax

�
A

−W (−A exp (−A))
− 1

	
. (38)

Otherwise, if (38) does not hold, we conclude that v1 ≥ Oi−1
Rmax

i

and L�(τu
i ) = 0 is achievable such that the optimal solution

is (τu
i )∗ = v1. This proves Proposition 1. �

APPENDIX B
PROOF OF PROPOSITION 2

Proof: Consider a tagged task k ∈ A and ϕk = j (i.e,
ak = uk,j = 1). We examine the potential change of feasibility
and objective value of (P4) after setting xi,j = x̂k,j , ∀i ∈
Vk, in the solution of X = X̂. We assume without loss of
generality that |Vk| > 1. Because the value of xk,j remains
unchanged, we only focus on task i ∈ Vk \ k. By definition,
for a task i ∈ Vk \k, either ai = 0 or ui,j = 0 must hold (i.e.,
aiui,j = 0), because otherwise we would have νj

i = i, which
contradicts with our assumption that i ∈ Vk \ k.

We first examine the impact to the feasibility of (P4).
If x̂k,j = 1, the corresponding constraints in (2) reduces to�

xk−1,j ≥ 1,
xi−1,j ≥ xi,j , i = k − |Vk| + 1, · · · , k − 1.

(39)

Using backward induction from i = k−1 to i = k−|Vk|+1,
we can infer that xi,j = 1 must hold ∀i ∈ Vk \ k to
satisfy the above inequalities. On the other hand, if x̂k,j = 0,
by setting xi,j = 0, ∀i ∈ Vk \k, we see that the corresponding
constraints in (2) reduces to xi,j ≥ 0, ∀i ∈ Vk, which are
automatically satisfied. Meanwhile, all the constraints in (3)
still hold because the LHS of (3) is non-increasing when
setting xi,j = 0, ∀i ∈ Vk \ k. From the above discussion,
(P4) is still feasible after setting xi,j = x̂k,j , ∀i ∈ Vk \ k.
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Because the value of xi,j , ∀i ∈ Vk \ k, does not affect
the objective value of (P4), the objective remains unchanged
after setting xi,j = x̂k,j , ∀i ∈ Vk \ k. Therefore, after
repeating the above substitutions for all the k ∈ A, (P4) is still
feasible and the objective remains unchanged, which proves
Proposition 2. �

APPENDIX C
PROOF OF LEMMA 1

Proof: We first prove the necessary condition. That is,
if a ∈ {0, 1}M is a feasible solution of (24), then ai−1 = 1,
∀i ∈ S must hold. Suppose that a is a feasible solution, with
the given X, the following constraints in (24c) are satisfied

ui−1,jai−1 ≥ xi,j − xi−1,j , ∀i ∈ S, j = 1, · · · , N. (40)

By the definition of S = {i|xi,j > xi−1,j , ∀i, j}, we have
xi,j − xi−1,j = 1 for ∀i ∈ S, j = 1, · · · , N . Then, it directly
follows from (40) that ai−1 = 1, ∀i ∈ S must hold.

We then prove the sufficient condition. That is, if some
a ∈ {0, 1}M satisfies ai−1 = 1, ∀i ∈ S, then a is a feasible
solution of (24). Recall that ϕi−1 denotes the service type of
task (i − 1), i.e., ui−1,ϕi−1 = 1. We show that all the con-
straints in (24c) hold (i.e., ui−1,jai−1 ≥ xi,j − xi−1,j , ∀i, j)
by separating the constraints into three non-overlapping cases:
1) i ∈ S and j = ϕi−1. The corresponding constraint holds
because ui−1,jai−1 = 1; 2) i ∈ S and j �= ϕi−1. In this
case, xi,j − xi−1,j ≤ 0 must hold because otherwise we
have ui−1,jai−1 = 1, such that ϕi−1 = j, which contradicts
with our assumption that j �= ϕi−1. Then, the corresponding
constraint in (24c) is satisfied because xi,j − xi−1,j ≤ 0; 3)
i /∈ S. By the definition of S, we infer that xi,j ≤ xi−1,j holds
for all j, such that the corresponding constraint in (24c) holds.
To sum up, all the constraints in (24c) are satisfied, such that
a is a feasible solution of (24). This also concludes the proof
of Lemma 1. �
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