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Abstract—Symbol rate is one of the most important parameters
in signal demodulation process. In real-time signal processing,
traditional symbol rate estimation algorithms for the Multiple
Phase Shift Keying (M-PSK) and the Multiple Quadrature
Amplitude Modulation (M-QAM) are based on the Fourier
transform of signal’s complex envelope. At the low signal-to-
noise ratio (SNR), the accuracy of symbol rate estimation can
be improved by increasing the number of symbols as much
as possible. However, this improvement is infeasible in many
applications such as the energy-limited Internet of Things devices
and sporadic noncooperative transmissions. In this paper, we
propose a data-driven bandpass filter (BPF) design scheme for
accurate estimation of symbol rate under low SNR with only
a small number of symbols available. The proposed scheme
considerably improves the estimation performance by optimizing
the BPF design using the equivalent dynamic linearization model
with time-varying pseudo-partial derivatives. Specifically, the
proposed scheme iteratively optimizes the upper and lower cut-off
frequencies of the BPF based on the measured complex envelope
spectrum until achieving the optimal BPF. Therefore, the peaks
of the complex envelope spectrum are extracted as the estimate
of the symbol rate by applying the optimal BPF. Experimental
results indicate the promise of the proposed scheme as an efficient
symbol rate estimator for sporadic signal at low SNR and with
a small number of symbols.

Index Terms—Symbol rate estimation, data-driven signal pro-
cessing, complex envelope spectrum, digital filter design, and
wireless communication.

I. INTRODUCTION

IN non-cooperative communication environments such as
military reconnaissance and surveillance, radio monitoring,

and intelligent signal identification, symbol rate parameter
estimation is a necessary condition for the signal decoding
of blind receiver [1]–[8]. In electronic reconnaissance and
interference identification, parameter estimation is used to
intercept enemy information. The symbol rate estimation is the
first step in the signal analysis process. At the same time, most
blind demodulation parameters (for example symbol timing
recovery) rely on the correct estimation of the symbol rate. In a
multi-rate system with burst transmissions [9], transmitter can
vary the symbol rate based on various criteria, such as channel
conditions, dynamic bandwidth constraints, content types, etc.
The receiver then estimates the changing symbol rate based
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on the captured data packet when no pilot data sequence is
available [10]. Symbol rate estimation is also an important
task when performing passive signal analysis on smart devices
such as low-power IoT devices [11]. In addition, the symbol
rate in commercial systems such as cable digital video broad-
casting, satellite digital video broadcasting and the second-
generation satellite digital video broadcasting is not fixed in
order to send the satellite signal to the cable network without
any processing at the cable front [4], [12], [13]. Therefore,
the effective and robust symbol rate estimation is essential
for adaptive communication systems before processing other
signal parameters [10].

As the first step in the many signal analysis applications,
blind symbol rate estimation has been studies for decades.
Using the estimated bandwidth as the estimate of the symbol
rate has low computational complexity but results in coarse
estimation [14], [15]. The wavelet-based methods [16] extract
the symbol rate from the spectrum of wavelet transform
coefficients. However, the wavelet transform generally requires
high sampling rates and high signal-to-noise ratios (SNR),
and the wavelet scale might experience blind spots which
affect the blind estimation performance. [17] proposed using
the cyclic spectrum for symbol rate estimation, in which the
cyclostationary characteristics of a digitally modulated single-
carrier signal are processed using autocorrelation function to
find the maximum cyclic correlation value. Like the wavelet-
based methods, the cyclic correlation based methods need a
high sampling rate and high SNR to ensure the estimation
accuracy, which implies high computational complexity and
long processing delay. In [18]–[20], inverse Fourier transform
was used to estimate the symbol rate of M-ary modulation
signals, but these estimators need a large number of symbols
otherwise the estimation accuracy deteriorates significantly.
Square complex envelope spectrum is efficient for symbol rate
estimation [21], [22] with low computational complexity, but
nonetheless its accuracy becomes worse at lower SNR and/or
with a small number of symbols.

In practice, estimation accuracy improvement by increasing
the number of symbols might not be feasible in many appli-
cations, especially for sporadic and low latency transmission.
For example, the IoT devices under harsh communication
conditions, i.e., underwater, stringent latency, military recon-
naissance, and power constrained, usually transmit very short
messages [23], [24]. To reduce communication overheads
and power consumption, sporadic transmission with ultra-low
delay and short symbol length is mostly used by the next gen-
eration mobile wireless networks [25], [26]. [26] introduces a
modulation on conjugate-reciprocal zeros technique that can
transmit sporadic short-packets at high spectral efficiency and
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low-latency via unknown wireless multipath channels. Fur-
thermore, frequency-hopping military communication systems
usually change modulation parameters between short bursts
to avoid interception and recognition [27]. Consequently, the
accuracy of symbol rate estimation for sporadic signal is
limited because the number of symbols thus collected is small.

Recently, scholars have proposed some symbol rate estimate
methods based on machine learning [28], [29]. [29] proposed
an automated symbol rate estimator for Binary Phase Shift
Keying (BPSK), Quadrature phase shift keying (QPSK), 16
phase shift keying (16-PSK), 16 Quadrature Amplitude Mod-
ulation (16-QAM), and 64 Quadrature Amplitude Modulation
(64-QAM) signals by using deep neural network (DNN) mod-
el. However, the symbol rate estimator for each modulation
scheme needs 5×105 sample data. Meanwhile, the DNN-based
method for symbol rate estimation needs to be trained in batch-
es of 104. This time-consuming estimation method cannot
better meet the requirements of real-time signal processing.
At the same time, a large number of data samples are not
within the scope of our discussion. In this paper, we present
an accurate estimator for the symbol rate at low SNR with a
small number of symbols. The strategy is to apply a bandpass
filter (BPF) on the received signal to diminish the noise in
frequency domain as much as possible before processing. The
main challenge is how to design a BPF with optimal upper and
lower cut-off frequencies that can best identify the spectral
lines of the symbol rate. We propose a data-driven scheme
to derive the optimal BPF design parameters for symbol rate
estimation without an explicit mathematical model [30]–[32].
This scheme iteratively optimizes the cut-off frequencies of
the BPF based on a series of local equivalent dynamic lin-
earization models with time-varying parameters. Specifically,
we initialize the upper and lower cut-off frequencies based on
the coarse symbol rate estimation that is obtained using the
3dB bandwidth estimation method. The upper and lower cut-
off frequencies are iteratively updated by using the proposed
data-driven scheme based on pseudo-partial derivative (PPD)
parameter vector [32] to further reduce the average-to-peak
power ratio of the complex envelope spectrum. This procedure
is repeated a few times over the same set of measurement data
until an optimal BPF is obtained. Finally, the estimated optimal
BPF is used to extract the complex envelope spectrum peaks
as the symbol rate spectral lines.

The major contributions of the data-driven symbol rate
estimate scheme proposed in this paper are as follows. Firstly,
aiming at the problem that the symbol rate estimation of
the short burst signal is not accurate at low SNR and a
small number of symbols, we proposed a data-driven BPF
design scheme in the paper for symbol rate estimation of the
short burst signal. The data-driven BPF is flexible in design
and has a small bandwidth. It can reduce the influence of
interference signals and noise on the symbol rate spectral
lines, and increase the SNR, thereby effectively improving
the performance of the symbol rate estimation of the short-
time burst signal at low SNR and with a small number of
symbols. Secondly, our proposed data-driven based algorithm
does not need to establish an accurate model of the system
and only require the input/output data of the system, i.e., the

input data are the BPF upper and lower cut-off frequencies
u(k), and the output average-to-peak ratio r(k) of the complex
envelope spectrum as a result of the filter specifications u(k)
obtained from measurement data. Compared with the DNN-
based symbol rate estimation algorithm [29], our proposed
algorithm does not require large training data and calculation
time. It only needs online iterative optimization, which can
well meet the requirements of real-time signal processing.

The rest of this paper is organized as follows. Section II
introduces the signal model of symbol rate estimation based on
the square complex envelope spectrum. Section III illustrates
the data-driven BPF design scheme for symbol rate estimation
at low SNR with a small number of symbols. In Section IV,
the proposed estimator is experimentally validated in a system
testbed. Section V concludes the paper.

II. UNBIASED SYMBOL RATE ESTIMATION

A. Signal Model

Consider a single-carrier digitally modulated signal, such as
Multiple Phase Shift Keying (M-PSK) or the Multiple Quadra-
ture Amplitude Modulation (M-QAM), transmitted over a
stationary Gaussian white noise channel. The analytical form
of the received modulated signal is given by [21], [22]

x(t) = e− j2π fct
+∞

∑
i=−∞

sih(t− iTs)+n(t), (1)

where fc is the carrier frequency,
{

si = cie jφi
}

is a sequence
of identically distributed independent symbols with zero mean
and unit variance, ci and φi are the amplitude and phase
of transmitted symbol in the i-th symbol period respectively.
The pulse shape filter h(t) is the root raised cosine (RRC)
function, Ts is the symbol duration, and n(t) is the additive
white Gaussian noise (AWGN) with two sided power spectral
density (PSD) having a variance of σ2

v . When fc = 0, x(t) is a
baseband signal. Thus, the baseband information of the signal
x(t) is

A(t) =
+∞

∑
i=−∞

sih(t− iTs), (2)

where |A(t)| is the module of the complex envelope of x(t)
with a period of Ts. The frequency response of the shaping
filter function h(t) is given by [15]

H(w)=


Ts, 0≤ |w| ≤ (1−α)π

Ts
Ts
2 [1+ sin Ts

2 (
π

Ts
−w)], (1−α)π

Ts
≤ |w| ≤ (1+α)π

Ts

0, |w| ≥ (1+α)π
Ts

(3)
where 0 ≤ α ≤ 1 is the roll-off factor. The symbol rate
estimator based on the square complex envelope spectrum is
given by [21], [22]

R̂s =
1

2π
argmax
w∈(0,+∞)

 ∞∫
t=−∞

|x(t)|2 e− jwtdt

 . (4)
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B. Unbiasedness of the Symbol Rate Estimator

The mean value of the estimated symbol rate R̂s is

E
[
R̂s
]
= E

 1
2π

argmax
w∈(0,+∞)

∞∫
t=−∞

|x(t)|2 e− jwtdt


=

1
2π

argmax
w∈(0,+∞)

∞∫
t=−∞

E
[
|x(t)|2

]
e− jwtdt.

(5)

From (1) and (2)

E
[
|x(t)|2

]
= E [x(t)x∗ (t)]

=E
[
(A(t)e− j2π fct +n(t))(A∗ (t)e j2π fct +n(t))

]
=E[A(t)A∗ (t)]+E[n(t)A∗ (t)e j2π fct ]

+E[A(t)e− j2π fctn∗ (t)]+E[n(t)n∗ (t)]

(6)

where (.)∗ denotes the complex conjugate operator. As n(t)
is Gaussian with zero mean and variance σ2, (6) can be
simplified as

E
[
|x(t)|2

]
=E [|A(t)| |A∗ (t)|]+σ

2. (7)

Substituting (2) into (7) gives

E
[
|x(t)|2

]
=E

[
+∞

∑
i=−∞

sih(t− iTs)×
+∞

∑
i=−∞

s∗i h∗ (t− iTs)

]
+σ

2.

(8)
Because {si} is an independent identically distributed zero-
mean unit-variance random sequence, E [sms∗i ]=δ (m− i). For
the response function of the shaping filter h(t) = h∗(t), (8) can
be rewritten as

E
[
|x(t)|2

]
=

+∞

∑
i=−∞

[h(t− iTs)]
2 +σ

2. (9)

Let

G(t) =
+∞

∑
i=−∞

[h(t− iTs)]
2. (10)

Its frequency response function can be given as [21]

G(w) =
1
Ts

comb1/Ts [H(w)⊗H(w)]

=
1
Ts

+∞

∑
i=−∞

[H(w)⊗H(w)]δ
(

w− 2πi
Ts

)
,

(11)

where comb1/Ts(.) is the comb of the unit impulse function
with intervals of 2π

/
Ts and ⊗ denotes the convolution op-

erator. When w = 2πi
/

Ts, G(w) obtains the maximum value
at w ∈ (0,+∞). G(w) is a periodic pulse sequence and can
be used to determine the symbol rate for i = 1 [22]. We set
w = 2π

/
Ts in (11) and then substitute (11) into (5), and obtain

E
[
R̂s
]
=1
/

Ts. (12)

Thus, R̂s is unbiased.

C. Complex Envelope Spectrum

In real-time signal processing, the estimate of the symbol
rate can be obtained by scanning the square complex envelope
spectrum for spectral peaks. Fig. 1 shows the square complex
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Fig. 1: Complex envelope spectrum of a 16-PSK signal with 1000 symbols.
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Fig. 2: Complex envelope spectrum of a 16-PSK signal with 200 symbols.

envelope spectrum of a 16-PSK signal with 1000 symbols,
where the symbol energy-to-noise power ratio Es/No = 8 dB,
the roll-off factor of the pulse shaping filter is 0.35, and the
number of samples per symbol is 4. Denote the sampling
frequency as fs, the two spectral lines of the symbol rate as
N1 and N2, and the size of the fast Fourier transform (FFT)
as N. The symbol rate estimator can be calculated as

R̂s =
|N2−N1|

2N
fs. (13)

However, with a small number of symbols and at low
SNR, the symbol rate spectral lines are difficult to identify
in the complex envelope spectrum. As shown in Fig. 2, for
the spectrum envelope of a 16-PSK with only 200 symbols,
where Es/No, the roll-off factor, and the number of samples
per symbol are the same as in Fig. 1, the spectral peaks are
overwhelmed by noise and thus are difficult to recognize.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 04,2021 at 12:19:15 UTC from IEEE Xplore.  Restrictions apply. 



1536-1276 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2021.3114678, IEEE
Transactions on Wireless Communications

4

-2000000 -1000000 0 1000000 2000000
0

2

4

6

8

10

12

14

16

3dB

A
m

pl
itu

de
 sp

ec
tru

m
 (d

Bm
)

Frequency (Hz)

Bw

S(m)

cf

Fig. 3: The smoothed amplitude spectrum S( f ).

III. ITERATIVE OPTIMIZATION OF SYMBOL RATE
ESTIMATION

A. Coarse Bandwidth Estimation

As discussed above, the symbol rate can be roughly esti-
mated from the received signal bandwidth Bw according to
the Nyquist criterion [14], [15]. The estimated symbol rate is
coarsely determined by the 3 dB bandwidth method [14], [15],
i.e.,

Step 1: Perform Fourier transform on the received signal
x(t) to get its amplitude spectrum X( f ).

Step 2: Apply a median filter to smooth the amplitude
spectrum X( f ) to obtain the smoothed amplitude spectrum
S( f ) as shown in Fig. 3.

Step 3: Use center of gravity method [15] to estimate the
carrier frequency fc, the formula is as follows:

fc =

∫ f s
2

− f s
2

X( f ). f d f

∫ f s
2

− f s
2

X( f )d f
. (14)

Step 4: Calculate the average value of the smoothed am-
plitude spectrum S( f ) in the range of [ fc− fs/12, fc + fs/12],
denoted as S(m) [2].

Step 5: Find the amplitude spectrum which is 3 dB s-
maller than S(m) and calculate its corresponding frequency.
Therefore, the estimated bandwidth Bw of x(t) is calculated
according to the following formula:

Bw =Max[arg{ f : 10 log[S(m)]−10log[S( f )] = 3}]−
Min[arg{ f : 10 log[S(m)]−10log[S( f )] = 3}].

(15)

The estimate of Bw is not accurate due to interference noise
in short-time burst signals and the smoothing filter. Refer
to [2], [14], using this estimated bandwidth in symbol rate
estimation will bring an estimation error close to 20%, but
can serve as a rough estimate of the symbol rate for further
refinement.

B. Iteratively Refining Estimation

In this subsection, we introduce the iterative BPF opti-
mization, which can start from the rough 3 dB bandwidth
estimation above. The two key parameters of a BPF are the
lower and upper cut-off frequencies, denoted as f1 and f2
respectively. Thus, its bandwidth is given by ( f2− f1). The
normalized cut-off frequencies of the corresponding BPF are
given by:

u1 =
f1

fs
/

2
,u2 =

f2

fs
/

2
, (16)

where fs represents the sampling rate of the signal. The cut-off
frequencies can be rewritten in the vector form u= [u1,u2]

T ,
where u1 < u2 and 0 < ui < 1, i = 1,2. Therefore, the nor-
malized upper and lower cut-off frequencies vectors in the
k-th iteration are u(k) = [u1(k),u2(k)]T . The initial cut-off
frequencies vector is given by u(1) = 2/ fs · [0.75Bw,1.25Bw]

T .
Since the initial value u(1) can not be arbitrarily set, the
position of the passband cut-off frequency and the size of
the BPF bandwidth will affect the accuracy of symbol rate
estimation. Therefore, to obtain an appropriate filter upper and
lower cutoff frequencies and find the maximum symbol rate
spectrum line, we develop a data-driven scheme to achieve
fine estimation performance by iteratively optimizing the BPF
upper and lower cut-off frequencies.

The digital filter design process usually involves the impulse
response function calculation based on the given specification-
s. There are various frequency tunning techniques for digital
filters in the literature [33], [34], but they are out of scope
of this paper. In this paper, we will use a data-driven method
based on model-free adaptive control [35], [36] to dynamically
optimize the cut-off frequencies of the BPF based on the
complex envelope spectrum. By iteratively adjusting the upper
and lower cut-off frequencies, the passband center frequency
of the BPF rc(k) = [u1(k) + u2(k)]/2 gradually approaches
to the spectral peak of the complex envelope. This peak
value of the complex envelope spectrum filtered through the
BPF is used as the estimate of the symbol rate. In order to
quantitatively evaluate the BPF, we use the average-to-peak
power ratio r as the performance metric, which is defined as
the ratio of the mean of the signal square complex envelope
spectrum within the passband to the peak. The average-to-peak
power ratio in the k-th iteration is denoted by r(k).

To summarize, the flow diagram of the proposed symbol rate
estimation scheme is displayed in Fig. 4. Firstly, the rough
estimate of the symbol rate is determined by the complex
signal bandwidth Bw obtained by the 3 dB bandwidth method,
based on which the cut-off frequencies u(1) and the average-
to-peak ratio r(1) of a BPF are initialized in the next step.
Then, the data-driven method iteratively updates the cut-off
frequencies u(k) based on the same measurement dataset.
The average-to-peak power ratio r(k) will reach to a certain
minimum value after a few iterations, where the optimal BPF
is achieved. Therefore, the symbol rate is estimated by (13)
from the spectral peaks filtered by the optimal BPF.
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Fig. 4: Signal processing diagram of the symbol rate estimation.

C. Dynamic Linearization Data Model

In this section, we develop the data-driven BPF design
scheme based on real-time measurement data. We start by
introducing the equivalent dynamic linearization data model
of BPF design. The average-to-peak power ratio of signal
complex envelope spectrum in k-th iteration is expressed as:

r(k) = f (r(k−1), ...,r(k−np),u(k), ...,u(k−ns)), (17)

where f (·) is an unknown nonlinear function, np and ns are
the unknown orders, u(k) is cut-off frequency vector of BPF
at the k-th iteration. It can be seen from (17) that the average-
to-peak power ratio r(k) of the complex envelope spectrum
at the k-th iteration is related to the cut-off frequencies u
from iterations k− ns to k and the average-to-peak power
ratio r from iterations k−np to k−1. The nonlinear multiple
input single output (MISO) system (17) can be represented
as a dynamic linearization model based on the following two
assumptions.

Assumption 1: The partial derivative of the unknown func-
tion f (·) with respect to the upper and lower cutoff frequencies
u(k),u(k−1), ...,u(k−ns) are continuous, which is a typical
constraint condition for general nonlinear systems.

Assumption 2: For any k, the MISO system (17) satisfies
the generalized Lipschitz condition, i.e.,

|∆r(k)|≤ b‖∆u(k)‖, (18)

where ∆r(k) = r(k) − r(k − 1), ∆u(k) = u(k) − u(k −
1),∆u(k) 6= 0, and b is a positive constant. This assumption
imposes an upper bound limitation on the change rate of the
average-to-peak power ratio relative to the change rate in the
upper and lower cut-off frequencies.

Proposition 1: For any nonlinear MISO system (17) that
satisfies Assumptions 1 and 2 for all k, there must exist a
time-varying parameter ϕ(k), such that system (17) can be
transformed into the following equivalent dynamic lineariza-

tion data model [32], [35]:

∆r(k) =ϕ(k)∆u(k), (19)

where ϕ(k) = [ϕ1(k),ϕ2(k)] is called PPD vector at the k-th
measurement, and ‖ϕ(k)‖ ≤ b is bounded for all k.

Proo f : Please refer to Appendix A. �

D. Data-Driven BPF Design for Symbol Rate Estimation

Since the PPD parameter ϕ(k) in equation (56) is unknown,
the modified projection algorithm [30] is used to estimate
the parameter ϕ(k) in the design. From the perspective of
eliminating steady-state deviation and ensuring the MISO
system stability, we choose a criterion function for the PPD
estimation as:

J(ϕ̂(k)) =‖∆r(k−1)− ϕ̂(k)∆u(k−1)‖2

+µ(k−1)‖ϕ̂(k)− ϕ̂(k−1)‖2 ,
(20)

where ϕ̂(k) is the estimation value of ϕ(k) and µ(k− 1) ≥
µmin > 0 is a variable penalty factor that restricts the excessive
variation in the PPD parameter estimation. Taking the partial
derivative of J(ϕ̂(k)) with respect to ϕ̂(k):

∂J(ϕ̂(k))
∂ ϕ̂(k)

=2[ϕ̂(k)∆u(k−1)−∆r(k−1)]∆u(k−1)T

+2µ(k−1) [ϕ̂(k)− ϕ̂(k−1)] .
(21)

Solving for the optimal condition ∂J(ϕ̂(k))
∂ ϕ̂(k) = 0, then:

ϕ̂(k) =
[
µ(k)ϕ̂(k−1)+∆r(k−1)∆u(k−1)T ]

×
[
∆u(k−1)∆u(k−1)T +µ(k)I

]−1
.

(22)

To avoid matrix inversion operation, we apply the Matrix
Inversion Lemma [37] to simplify (22), and then obtain

ϕ̂(k) = ϕ̂(k−1)

+
η [∆r(k−1)− ϕ̂(k−1)∆u(k−1)]∆u(k−1)T

µ(k−1)+‖∆u(k−1)‖2 ,
(23)

where η is the step-length factor.
Proo f : Please refer to Appendix C. �

From the above equation, the parameter ϕ̂(k) is related to
the cut-off frequencies and the average-to-peak power ratio till
time instant k−1. This implies that ϕ̂(k) can be regard as a
slowly time-varying parameter.

To make the estimation parameter ϕ̂(k) have a stronger
time-varying tracking ability and ensure ∆u(k) 6= 0, we apply
the following constraints

ϕ̂i(k) = ϕ̂i(1), if sign(ϕ̂i(k)) 6= sign(ϕ̂i(1)), i = 1,2

ϕ̂(k) = ϕ̂(1), if ‖ϕ̂(k)‖ ≤ σ or ‖∆u(k)‖2 ≤ σ ,
(24)

where ϕ̂(1) is the initial value of the PPD parameter vector, σ

is a small positive constant to reset ‖ϕ̂(k)‖ if the magnitude
of ‖ϕ̂(k)‖ or ‖∆u(k)‖ is too small. This reset scheme can
strengthen the tracking ability of the estimated algorithm.

Let r∗ be the target average-to-peak power ratio. Our
objective is to find the upper and lower cut-off frequencies
u(k), at which the resulting r(k) is close to r∗. Define a cost
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function as

J(u(k)) = ‖r∗− r(k)‖2 +λ (k−1)‖u(k)−u(k−1)‖2 ,
(25)

where λ (k − 1) > 0 is a variable penalty factor used to
prevent excessive variation in estimating u(k). Combining (23)
and (56) gives

r(k) = r(k−1)+ ϕ̂(k)∆u(k). (26)

By substituting (26) into (25), the partial derivative of J(u(k))
with respect to u(k) is

∂J(u(k))
∂u(k)

= 2 [ϕ̂(k)∆u(k)+ r(k−1)− r∗]ϕ̂(k)T+2λ (k−1)∆u(k).

(27)
Solving the optimal condition ∂J(u(k))

∂u(k) = 0 gives

u(k) = u(k−1)+
ρϕ̂(k)T

λ (k−1)+‖ϕ̂(k)‖2 [r
∗− r(k−1)] , (28)

where ρ is the step-length factor.

E. Optimization and Convergence Analysis

Note that the penalty factors λ (k) and µ(k) restrict the vari-
ation of u(k) and ϕ̂(k), respectively. They can also reduce the
system steady-state error, and prevent the abnormal situation
where the denominator in (23) or (28) is zero. The penalty
factors should be appropriately chosen to ensure the system
stability and the tracking capability [30], [36]. In this paper,
we apply the gradient descent algorithm [38] to iteratively
optimize the penalty factors. Therefore, λ (k) becomes

λ (k) = λ (k)−β1

[
∂J(u(k))

∂u(k)

]T [
∂u(k)

∂λ (k−1)

]
, (29)

where β1 is the learning rate, ∂J(u(k))
∂u(k) was previously calcu-

lated in equation (27). From (28), ∂u(k)
∂λ (k−1) is given by

∂u(k)
∂λ (k−1)

=− ρϕ̂(k)T (r∗− r(k−1))[
λ (k−1)+‖ϕ̂(k)‖2

]2 . (30)

In addition, λ (k)> λmin > 0. Similarly, µ(k) is given by

µ(k) = µ(k)−β2

[
∂J(ϕ̂(k))

∂ ϕ̂(k)

][
∂ ϕ̂(k)

∂ µ(k−1)

]T

, (31)

where β2 is the learning rate, ∂J(ϕ̂(k))
∂ ϕ̂(k) was previously calcu-

lated in equation (21). From (23), ∂ ϕ̂(k)
∂ µ(k−1) is given by

∂ ϕ̂(k)
∂ µ(k−1)

=
−η [∆r(k−1)− ϕ̂(k−1)∆u(k−1)]∆u(k−1)T[

µ(k−1)+‖∆u(k−1)‖2
]2 .

(32)
In this proposed algorithm, the upper and lower cut-off

frequencies u(k) of BPF are continuously optimized based
on data-driven method and gradient descent method. In each
iteration, the data-driven algorithm can continuously adjust
the BPF upper and lower cut-off frequencies u(k) according
to (23) and (28). Then, r(k) for given u(k) is calculated and
used to update the upper and lower cut-off frequencies to

Algorithm 1 Data-Driven BPF Design for Symbol Rate Esti-
mation

1: Input:
• Target average-to-peak power ratio r∗.
• Small positive constant σ .
• Maximum iterations number tmax.

2: Initialize ϕ̂(1), r(1), η , ρ , β2, β1, µ(1), λ (1), u(1),
∆u(1).

3: for t < tmax do
4: ϕ̂(k+1) = ϕ̂(k)+ η [∆r(k)−ϕ̂(k)∆u(k)]∆u(k)T

µ(k)+‖∆u(k)‖2
5: if sign(ϕi(k+1)) 6= sign(ϕi(1), i = 1,2 then

ϕ̂i(k+1) = ϕ̂i(1)
6: end if
7: if ‖ϕ̂(k+1)‖ ≤ σ or ‖∆u(k)‖2 ≤ σ then

ϕ̂(k+1) = ϕ̂(1)
8: end if
9: u(k+1) = u(k)+ ρϕ̂(k+1)T

λ (k)+‖ϕ̂(k+1)‖2
[r∗− r(k)]

10: Calculate rc(k+1) = [u2(k+1)+u1(k+1)]/2
11: if u1(k + 1) > u2(k + 1) or u2(k + 1) < rc(k + 1) or

u1(k+1)> rc(k+1)
then

u1(k+1) = u1(k), u2(k+1) = u2(k)
12: end if
13: Store u(k+1) and compute r(k+1)

14: λ (k+1) = λ (k)−β1

[
∂J(u(k+1))

∂u(k+1)

]T [
∂u(k+1)

∂λ (k)

]
15: µ(k+1) = µ(k)−β2

[
∂J(ϕ̂(k+1))

∂ ϕ̂(k+1)

][
∂ ϕ̂(k+1)

∂ µ(k)

]T

16: if r(k+1)> r(k) then
17: break
18: end if
19: t = t +1, k = k+1
20: end for
21: Find u(k+1) corresponding to the minimum r(k+1).
22: Generate the optimal BPF.

obtain u(k+1). The iteration is stopped until the smallest r(k)
is found or the number of iterations reaches a predetermined
threshold. During iterations, the estimation parameter ϕ̂(k)
maintains a constant direction, and thus makes both u1(k)
and u2(k) move towards the spectral peak of the complex
envelope. Note that the cut-off frequencies must be kept as
u2(k) > rc(k) > u1(k) in each iteration. We also show the
upper and lower cut-off frequencies as the iteration proceeds
in Fig. 5. It can be seen that the upper and lower cut-off
frequencies first quickly approach the spectral peak and finally
converge to a stable value. In this way, an optimal BPF is
generated based on the obtained optimal upper and lower cut-
off frequencies. The procedure is summarized in Algorithm
1. Next, the obtained optimal BPF is used to process the
squared complex envelope of the same set of signals received.
Finally, the spectral peaks in the complex envelope spectrum
are extracted as the estimated symbol rate spectral lines to
achieve the symbol rate estimate.

Proposition 2: For nonlinear system (17), if it satisfies As-
sumption 1 and Assumption 2, and r∗ is a constant, then there
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Fig. 5: The upper and lower cut-off frequencies as the iteration proceeds.
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Fig. 6: Complex envelope spectrum obtained using the data-driven BPF.

exists λ (k) > λmin > 0 that guarantees 1) lim
k→∞

|r∗− r(k)| = 0

and 2) {u(k)} and {r(k)} are bounded sequences.
Proo f : Refer to Appendix B. �
Fig. 6 shows the complex envelope spectrum of 16-PSK

signal processed by the optimal BPF, where the number of
symbols is 200, the roll-off factor of the pulse shaping filter
0.35, the Es/No is 8 dB and the algorithm parameters ϕ̂(1),
η , ρ , β1, β2, µ(1), λ (1) set properly as detailed in Section IV
below. Note that the optimal BPF filtered out the unnecessary
noise around the symbol rate spectral lines, and thus improves
the symbol rate estimation accuracy.

Here, we assess the computational complexity of the pro-
posed symbol rate estimation method. The complexity includes
two parts: 3dB bandwidth estimation and the data-driven BPF
algorithm. The 3dB bandwidth estimation process estimates
the received signal amplitude spectrum X( f ) and uses center of
gravity method [15] to estimate the carrier frequency. Let N be
the numbers of data samples used for estimating the estimated

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Pr
ob

ab
ili

ty

The value of the parameter

 
 

Fig. 7: The symbol rate estimation success probability of the proposed
algorithm under different η , ρ , λ (1) and µ(1).
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Fig. 8: Effective estimation probability of 16-PSK signals at different Es/No.

3dB bandwidth Bw, the overall complexity of the bandwidth
estimation method is O(Nlog2N). The data driven BPF only
involves the operation of addition, subtraction, multiplication,
division and circulation. Therefore, the overall complexity of
the proposed algorithm is O(Nlog2N).

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This section evaluates the proposed estimator.

A. Simulation Results

We first compare the data-driven BPF algorithm with the tra-
ditional envelop spectrum method and the bandwidth method.
Taking both 16-PSK and 16-QAM as examples, we assess the
performance under various SNRs, roll-off factors, and numbers
of data symbols. In the simulation experiment, the sampling
frequency fs is 5MHz, the symbol rate is 1.25Msym/s and the
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Fig. 9: Effective estimation probability of 16-QAM signals at different Es/No.
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Fig. 10: Effective estimation probability of 16-PSK signals with different
number of symbols.

pulse filter span is 6. The channel is assumed to be additive
white Gaussian noise (AWGN). Unless otherwise stated, the
roll-off factor is 0.35, the number of symbols is 300, and
Es/No is 8 dB.

The initialization parameters may affect the performance
of the proposed data-driven symbol rate estimation algorithm.
The step size factors η and ρ are used to make the control
algorithm more general and more flexible. To quantify the
influence of the parameters η , ρ , λ (1) and µ(1) on the perfor-
mance of symbol rate estimation, we compute the symbol rate
estimation success probability of the proposed scheme under
5000 trials, where the tolerable estimation error e is equal to
0.001. We compare the performance of different initialization
parameters on the symbol rate estimation success probability
in Fig. 7. According to [30]–[32], the initial interval of these
parameters is set to (0,3]. In the experiment, we choose a 16-
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Fig. 11: Effective estimation probability of 16-QAM signals with different
number of symbols.
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Fig. 12: Effective estimation probability of 16-PSK signals at different roll-off
factor.

QAM modulated signal, the SNR is set to 8, and the number
of symbols of the signal is 300. Through 5000 Monte Carlo
experiments, we found that the success probability of signal
symbol rate estimation is above 0.94 when λ (1), µ(1), η

and ρ are in the interval of [0.6,3]. At the same time, the
different λ (1) and µ(1) in the interval [0.2,3] have little effect
on the symbol rate estimation success probability. Therefore,
according to the experiment results, we set λ (1)= 2, µ(1)= 1,
η = 1, ρ = 1. As for the choice of learning factors β1 and β2,
if the learning factors are too small, the algorithm iteration
speed will be slow and the algorithm optimization time will
become long. Refer to the paper [39] and after trial debugging,
we set the learning factors β1 and β2 to 0.05. In addition,
ϕ̂(1) is the initial value of the PPD parameter ϕ̂(k), the
PPD parameters can be optimized iteratively by (23) in the
revised manuscript. Refer to [30], [40] and after experimental
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Fig. 13: Effective estimation probability of 16-QAM signals at different roll-
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Fig. 14: NRMSE of 16-PSK signals with different number of symbols.

debugging, then the other data driven algorithm parameters
are set as: ϕ̂(1) = [−0.35,0.35], ∆u(1) = [0,0]T , r(1) = 0.15,
tmax = 50, r∗= 0.08, σ = 10−5.

Define a tolerable estimation error as e(e > 0), which is
the maximum difference allowed between the estimation and
the true value of the symbol rate Rs. If the estimation error
is smaller than e, we consider the estimation successful;
otherwise the estimation fails. According to [18] [20], we
consider two tolerable levels e = 0.01 and e = 0.001. In the
numerical examples below, every probability is obtained from
5000 times Monte Carlo simulation.

In the first experiment, we compare the effective estimation
probability of the proposed algorithm with traditional envelop
spectrum approach and the bandwidth approach at different
Es/No and modulation methods. As is shown in Fig. 8 and
Fig. 9, the proposed data-driven BPF algorithm can achieve
approximately 100% estimation probability when Es/No is
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Fig. 15: NRMSE of 16-QAM signals with different number of symbols.
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Fig. 16: NRMSE of 16-PSK signals at different Es/No.

around 8 dB for both modulation methods. In contrast, the
traditional complex envelope spectrum method achieves mere-
ly 50% and 31% effective estimation probabilities for 16-PSK
and 16-QAM, respectively, where Es/No is around 8 dB. Even
if Es/No increases to 14 dB, the traditional envelop spectrum
method can only achieve 72% accuracy for 16-PSK and less
than 48% for 16-QAM signals, respectively. The effective
estimation success rate of the bandwidth estimation method is
not high under the two modulation methods. Even if Es/No
is 14 dB, the effective estimation probability achieved by the
bandwidth method is less than 70%. The results demonstrate
the superiority of the proposed data-driven BPF scheme over
the traditional method and bandwidth method, especially in
the low SNR region.

In the second experiment, we vary the number of symbols
and compare the proposed data-driven BPF algorithm with
the traditional envelop spectrum method and the bandwidth
method. Fig. 10 and Fig. 11 compares the proposed data-
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Fig. 17: NRMSE of 16-QAM signals at different Es/No.
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Fig. 18: NRMSE of 64-QAM signals with different number of symbols.

driven algorithm against the envelope spectrum method and the
bandwidth method in terms of effective estimation probability
for two modulation methods. It can be seen that the 16-PSK
signal can achieve an estimation success rate of 90% with only
200 symbols using the proposed algorithm, as compared to
500 symbols using the traditional complex envelope method.
Similarly, to achieve 90% effective estimation probability, the
16-QAM signal needs only 180 symbols using the proposed
algorithm, while the traditional complex envelope method
requires more than 500 symbols. The symbol rate estimation
success rate of the bandwidth method for 16-PSK and 16-
QAM modulation modes with number of symbols less than
500 are all lower than 15%. Moreover, when the number of
signal symbols is less than or equal to 240, e ≤ 0.001, the
proposed algorithm can achieve over 95% effective estimation
probability while the traditional complex envelope spectrum
method fails most of the time.

In Fig. 12 and Fig. 13, we study the effect of the roll-
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Fig. 19: NRMSE of 64-QAM signals at different Es/No.
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Fig. 20: Real-world experiment setup for symbol rate estimation.

off factor. As seen, the proposed algorithm achieves close to
100% estimation probability at 0.4 roll-off factor, while the
traditional complex envelope spectrum method requires 0.6
and 0.7 roll-off-factor for 16-PSK and 16-QAM respectively.
It is well known that the smaller the roll-off factor, the more
serious the inter-symbol interference of the signal. However,
when the roll-off factor is small, the proposed algorithm still
has a high symbol rate estimation success rate, which shows
that the proposed algorithm has strong anti-interference ability.

We also use the normalized root mean square error (N-
RMSE) to evaluate the performance of the proposed symbol
rate estimation algorithm. Define

NRMSE =

√√√√ N

∑
i=1

(
Rs− R̂s(i)

)2

/
NR2

s , (33)

where R̂s(i) is the i-th estimated symbol rate and Rs is the
actual symbol rate.

Fig. 14 and Fig. 15 illustrate the NRMSE of the symbol
rate estimation for 16-PSK/16-QAM signals, respectively. The
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Fig. 21: The complex envelope spectrum of the obtained data

proposed symbol rate estimation algorithm significantly out-
performs the traditional complex envelope spectrum method
and bandwidth method. Specifically, for 16-PSK, the NRMSE
of the complex envelope spectrum method is higher than 0.2
when the number of symbols is less than 500, the bandwidth
method is higher than 0.08 when the number of symbols is
less than 500, while that of the proposed algorithm is close to
0.001 when the number of symbols is less than 280. For 16-
QAM, the NRMSE of the complex envelope spectrum method
is higher than 0.4 when the number of symbols is less than
500, the bandwidth approach is higher than 0.08 when the
number of symbols is less than 500, while that of the proposed
algorithm is close to 0.001 when the number of symbols is less
than 300. Fig. 16 and Fig. 17 show symbol rate estimation
for 16-PSK/16-QAM under various Es/No. When Es/No is
greater than 4 dB, the NRMSE of the proposed algorithm is
is less than 0.01, but that of the traditional method is greater
than 0.5, the NRMSE of the bandwidth method is about 0.09.

To evaluate the performance of our proposed algorithm
on other M-ary modulated signals, we conducted simulation
experiments on 64-QAM modulation signals in Fig. 18 and
Fig. 19. The experiment results show that the proposed data-
driven algorithm can also be applied to other higher order mod-
ulation signals. Fig. 19 illustrate the NRMSE of the symbol
rate estimation for 64-QAM signal under various Es/No. The
result shows that the performance of the proposed data-driven
algorithm significantly outperforms the traditional complex
envelope spectrum method and 3dB bandwidth method. Under
the same low Es/No, the NRMSE of the proposed symbol
rate estimation algorithm is smaller than that of the other two
algorithms. When Es/No is greater than 4, the NRMSE of
the proposed symbol rate estimation algorithm is less than
0.01. At the same time when the number of symbols is more
than 320, Fig. 18 shows the NRMSE of the proposed symbol
rate estimation algorithm is less than 0.001. Both figures show
the effectiveness of the proposed algorithm in estimating the
symbol rate of higher-order modulation methods.
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Fig. 22: The complex envelope spectrum of the obtained data after the BPF.

B. Hardware Experiment

The experiment setup is as follows. We use an N5172B
EXG series RF vector signal generator to generate the 16-PSK
signal at a carrier frequency of 2.4GHz with an output power
of -50 dBm. The signal is sampled by an AD9361 RF front-
end controlled by a Xilinx Artix-7 FPGA AC701 development
board, as shown in Fig. 20. After down-converting it, we
collect 584 data samples to evaluate the performance of
the symbol rate estimation. The sampling rate of the down-
converted signal is 10MHz. The spectrum of the traditional
complex envelope spectrum method is depicted in Fig. 21,
where the real symbol rate spectral lines are buried under noise
and difficult to identify. When we use the square complex
envelope method to estimate the symbol rate of the obtained
down-converted signal, the estimated value of symbol rate is
0.2863Mhz, and its normalized estimation error is 77.1%. This
shows that the square complex envelope method is completely
failed at this time, and it cannot complete the symbol rate
estimation with a small number of symbols. By using the
3dB bandwidth method to estimate the symbol rate of the
processed signal, we can get the estimated symbol rate of
1.130Mhz, which has a normalized estimation error of 9.6%.
The error is also very large. In comparison, as shown in
Fig. 22, after the signal passes through the data-driven BPF,
the symbol rate spectral lines become clearly visible. The
normalized estimation error between the estimated symbol rate
R̂s=1.2521MHz and the actual symbol rate Rs=1.25MHz is
0.168%, and is within the acceptance range.

V. CONCLUSION

This paper has developed a new symbol rate estimation
approach for wireless communication systems at low SNR and
with a small number of symbols. We proposed a data-driven
BPF design scheme that can continuously optimize the upper
and lower cut-off frequencies based on the measured average-
to-peak power ratio of the complex envelope spectrum, until
the average-to-peak power ratio converges to the minimum.
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The optimal BPF is used to process the signal’s complex
envelope and extract spectral peaks as the symbol rate esti-
mate. The numerical and experimental results demonstrate that
the proposed data-driven BPF design scheme can effectively
improve the accuracy of symbol rate estimation at low SNR
and with a small number of symbols.

APPENDIX A
PROOF OF PROPOSITION 1

proo f : From the dynamic linearization data model (17), we
have:

∆r(k) = r(k)− r(k−1)
= f (r(k−1), ...,r(k−np),u(k), ...,u(k−ns))

− f (r(k−2), ...,r(k−np−1),u(k−1), ...,u(k−ns−1))
= f (r(k−1),r(k−2), ...,r(k−np),u(k),u(k−1),
...,u(k−ns))− f (r(k−1),r(k−2), ...,r(k−np),u(k−1),
u(k−1), ...,u(k−ns))+ f (r(k−1),r(k−2), ...,
r(k−np),u(k−1),u(k−1), ...,u(k−ns))− f (r(k−2),
...,r(k−np),u(k−1),u(k−2), ...,u(k−ns−1)).

(34)

Let

ψ(k) = f (r(k−1),r(k−2), ...,r(k−np),u(k−1),
u(k−1), ...,u(k−ns))

− f (r(k−2),r(k−3), ...,r(k−np−1),u(k−1),
u(k−2), ...,u(k−ns−1)).

(35)

By the differential mean value theorem [41] and Assumption
1, (34) can be rewritten as

∆r(k) =
∂ f ∗

∂u(k)
∆u(k)+ψ(k), (36)

where
∂ f ∗

∂u(k)
=

[
∂ f ∗

∂u1(k)
,

∂ f ∗

∂u2(k)

]
, (37)

and ∂ f ∗
/

∂ui(k), i ∈ 1,2 is the partial derivative of f (·) with
respect to the cut-off frequency ui(k) at some point between
in the interval [ui(k),ui(k−1)]. For each fixed k, we apply the
following equation

ψ(k) = ξ(k)∆u(k). (38)

Since ‖∆u(k)‖ 6= 0, (38) must have at least one solution ξ∗(k)
for each k. Let

ϕ(k) =
∂ f ∗

∂u(k)
+ξ∗(k). (39)

Based on (39) and (38), (36) can be written as

∆r(k) =ϕ(k)∆u(k), (40)

where ϕ(k) is called the PPD parameter vector at the k-th
iteration. Therefore, we have ‖ϕ(k)‖≤ b based on Assumption
2. �

APPENDIX B
PROOF OF PROPOSITION 2

Proo f : This proof includes two steps. The first step is
to prove the boundness of the estimated PPD parameter and
the second is to prove the convergence and stability of the
proposed algorithm.
ϕ̂(k) is bounded if it satisfied one of three cases: ‖ϕ̂(k)‖ ≤

σ or ‖∆u(k)‖2 ≤ σ or sign(ϕ̂i(k)) 6= sign(ϕ̂i(1). Otherwise,
define the PPD parameter vector estimation error as ϕ̃(k) =
ϕ̂(k)−ϕ(k) and subtract ϕ(k) from both sides of equa-
tion (23), then

ϕ̃(k) = ϕ̂(k−1)−ϕ(k−1)+ϕ(k−1)−ϕ(k)

+
η [ϕ(k−1)∆u(k−1)− ϕ̂(k−1)∆u(k−1)]∆u(k−1)T

µ(k−1)+‖∆u(k−1)‖2

=ϕ(k−1)−ϕ(k)+ ϕ̃(k−1)

− ηϕ̃(k−1)∆u(k−1)∆u(k−1)T

µ(k−1)+‖∆u(k−1)‖2 .

(41)
From Proposition 1, we have ‖ϕ(k−1)−ϕ(k)‖ ≤ 2b since
‖ϕ(k)‖ ≤ b. Take the norms on both sides of formula (41),
and then we can get

‖ϕ̃(k)‖ ≤

∥∥∥∥∥ϕ̃(k−1)

[
I− η∆u(k−1)∆u(k−1)T

µ(k−1)+‖∆u(k−1)‖2

]∥∥∥∥∥+2b.

(42)
By squaring the first term of right side of formula (42), we
have∥∥∥∥∥ϕ̃(k−1)

[
I− η∆u(k−1)∆u(k−1)T

µ(k−1)+‖∆u(k−1)‖2

]∥∥∥∥∥
2

= ‖ϕ̃(k−1)‖2

+

[
η ‖∆u(k−1)‖2

µ(k−1)+‖∆u(k−1)‖2 −2

]
× η ‖ϕ̃(k−1)∆u(k−1)‖2

µ(k−1)+‖∆u(k−1)‖2 .

(43)
Since 0 < η ≤ 2, µ(k−1)≥ µmin > 0, we have[

−2+
η ‖∆u(k−1)‖2

µ(k−1)+‖∆u(k−1)‖2

]
< 0. (44)

From (43) and (44), we can deduce that there exists 0< d1 < 1,
such that∥∥∥∥∥ϕ̃(k−1)

[
I− η∆u(k−1)∆u(k−1)T

µ(k−1)+‖∆u(k−1)‖2

]∥∥∥∥∥≤ d1 ‖ϕ̃(k−1)‖ .

(45)
Please note that the value of d1 is not required here as long
as we know its existence. Substituting (45) into (42) yields

‖ϕ̃(k)‖ ≤ d1 ‖ϕ̃(k−1)‖+2b≤ d1(d1 ‖ϕ̃(k−2)‖+2b)+2b

≤ ... < dk−1
1 ‖ϕ̃(1)‖+ 2b

1−d1
.

(46)
The inequality (46) means that ϕ̃(k) is bounded. According
to Proposition 1, ‖ϕ(k)‖< b, thus ϕ̂(k) is bounded.

In the second step, we prove that {r(k)} is bounded. Define

e(k) = r∗− r(k). (47)
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By equations (26) and (28), we can get the system tracking
error

e(k) = r∗− [r(k−1)+ ϕ̂(k)∆u(k)]

= r∗− r(k−1)− ρϕ̂(k)ϕ̂(k)T [r∗− r(k−1)]

λ (k−1)+‖ϕ̂(k)‖2 .
(48)

Take the absolute value of both sides of (48)

|e(k)|= |r∗− r(k−1)− ϕ̂(k)∆u(k)|

= |e(k−1)|

∣∣∣∣∣1− ρϕ̂(k)ϕ̂(k)T

λ (k−1)+‖ϕ̂(k)‖2

∣∣∣∣∣ . (49)

Since ϕ̂(k)ϕ̂(k)T = ‖ϕ̂(k)‖2 > 0 and 0 < ρ ≤ 1, there exists
a constant 0 < c < 1 such that

0 < 1− ρϕ̂(k)ϕ̂(k)T

λ (k−1)+‖ϕ̂(k)‖2 ≤ c < 1. (50)

From (49) and (50), we have

|e(k)| ≤ c |e(k−1)| ≤ c2 |e(k−2)| ≤ ...ck−1 |e(1)| . (51)

This guarantees that as k increases, the system tracking error
e(k) decreases exponentially. This implied that the output error
of the MISO system is bounded. As r∗ is a constant, {r(k)}
is also bounded.

From (28) and λ (k−1)+‖ϕ̂(k)‖2 ≥ 2
√

λmin ‖ϕ̂(k)‖2,

‖∆u(k)‖=

∥∥∥∥∥ρϕ̂(k)T [r∗− r(k−1)]

λ (k−1)+‖ϕ̂(k)‖2

∥∥∥∥∥
≤

∥∥ρϕ̂(k)T
∥∥ |e(k)|∥∥∥λ (k−1)+‖ϕ̂(k)‖2

∥∥∥
≤

∥∥ρϕ̂(k)T
∥∥ |e(k)|∥∥∥∥2

√
λmin ‖ϕ̂(k)‖2

∥∥∥∥ .
(52)

Let ∥∥ρϕ̂(k)T
∥∥∥∥∥∥2

√
λmin ‖ϕ̂(k)‖2

∥∥∥∥ = P, (53)

where P is a bounded constant, then

‖u(k)‖= ‖u(k)−u(k−1)+u(k−1)− ...−u(1)+u(1)‖
≤ ‖u(k)−u(k−1)‖+ ...+‖u(2)−u(1)‖+‖u(1)‖
= ‖∆u(k)‖+‖∆u(k−1)‖+ ...+‖∆u(2)‖+‖u(1)‖
≤ pck−1 |e(1)|+ pck−2 |e(1)|+ ...+ pc |e(1)|+‖u(1)‖

<
pc

1− c
|e(1)|+‖u(1)‖ .

(54)
Therefore, the sequence {u(k)} is bounded. �

APPENDIX C
Matrix Inversion Lemma [37]: A is a positive-definite ma-

trix, B is an n×r matrix, then the inverse of the matrix A added
to a block of dyads (represented as BBH) can be represented
as:

(A+BBH)−1 = A−1−A−1B(BHA−1B+ I−1)−1BHA−1
,

(55)

where superscript H denotes the complex conjugate transpose
operation. According to equations (20) and (21) and the
optimization condition ∂J(ϕ̂(k))

∂ ϕ̂(k) = 0, we can get

ϕ̂(k)×Θ= [µ(k−1)ϕ̂(k−1)+∆r(k−1)∆u(k−1)T ],
(56)

where Θ=[∆u(k−1)∆u(k−1)T +µ(k−1)I]. then

ϕ̂(k) =[µ(k−1)ϕ̂(k−1)+∆r(k−1)∆u(k−1)T ]×Θ−1

=µ(k−1)ϕ̂(k−1)×Θ−1

+ ϕ̂(k−1)∆u(k−1)∆u(k−1)T ×Θ−1

− ϕ̂(k−1)∆u(k−1)∆u(k−1)T ×Θ−1

+∆r(k−1)∆u(k−1)T ×Θ−1

=ϕ̂(k−1)[µ(k−1)I+∆u(k−1)∆u(k−1)T ]×Θ−1

+[∆r(k−1)− ϕ̂(k−1)∆u(k−1)]∆u(k−1)T ×Θ−1

=ϕ̂(k−1)

+ [∆r(k−1)− ϕ̂(k−1)∆u(k−1)]∆u(k−1)T ×Θ−1.
(57)

Let A = µ(k−1)I, B = ∆u(k−1). Since ∆u(k−1) is a real
vector, BH = ∆u(k−1)T , then A−1 = I

µ(k−1) , so

BHA−1B+ I−1 = ∆u(k−1)T I
µ(k−1)

∆u(k−1)+ I

=
‖∆u(k−1)‖2+µ(k−1)

µ(k−1)
.

(58)

Applying the Matrix Inversion Lemma to [∆u(k− 1)∆u(k−
1)T +µ(k−1)I]−1 and combining equation (58), we can get

[∆u(k−1)∆u(k−1)T +µ(k−1)I]−1

=
I

µ(k−1)
−

[
‖∆u(k−1)‖2+µ(k−1)

µ(k−1)

]−1
∆u(k−1)
µ(k−1)

∆u(k−1)T

µ(k−1)

=
I

µ(k−1)
− ∆u(k−1)∆u(k−1)T

µ(k−1)× [‖∆u(k−1)‖2+µ(k−1)]

=
[‖∆u(k−1)‖2+µ(k−1)]I

µ(k−1)× [‖∆u(k−1)‖2+µ(k−1)]

− ∆u(k−1)∆u(k−1)T

µ(k−1)× [‖∆u(k−1)‖2+µ(k−1)]

=
‖∆u(k−1)‖2 I+µ(k−1)I−∆u(k−1)∆u(k−1)T

µ(k−1)× [‖∆u(k−1)‖2+µ(k−1)]
.

(59)
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Substituting (59) into (57), and we get

ϕ̂(k) =ϕ̂(k−1)+ [∆r(k−1)− ϕ̂(k−1)∆u(k−1)]∆u(k−1)T

× [‖∆u(k−1)‖2 I+µ(k−1)I−∆u(k−1)∆u(k−1)T ]

µ(k−1)× [‖∆u(k−1)‖2+µ(k−1)]
=ϕ̂(k−1)+ [∆r(k−1)− ϕ̂(k−1)∆u(k−1)]

× [‖∆u(k−1)‖2
∆u(k−1)T+µ(k−1)∆u(k−1)T −U ]

µ(k−1)× [‖∆u(k−1)‖2+µ(k−1)]
=ϕ̂(k−1)+ [∆r(k−1)− ϕ̂(k−1)∆u(k−1)]

× [µ(k−1)∆u(k−1)T ]

µ(k−1)× [‖∆u(k−1)‖2+µ(k−1)]

=ϕ̂(k−1)+
[∆r(k−1)− ϕ̂(k−1)∆u(k−1)]∆u(k−1)T

[‖∆u(k−1)‖2+µ(k−1)]
,

(60)
where U = ∆u(k− 1)T ∆u(k− 1)∆u(k− 1)T . To make the
control algorithm more more general and more flexible, a step
factor η ∈ (0,2] is added, so

ϕ̂(k) =ϕ̂(k−1)

+
η [∆r(k−1)− ϕ̂(k−1)∆u(k−1)]∆u(k−1)T

µ(k−1)+‖∆u(k−1)‖2 .

(61)
�
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