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Demand Response Management for Profit
Maximizing Energy Loads in Real-Time

Electricity Market
Shuoyao Wang , Suzhi Bi , Member, IEEE, and Ying-Jun Angela Zhang , Senior Member, IEEE

Abstract—In this paper, we consider the profit-maximizing de-
mand response of an energy load in the real-time electricity mar-
ket. In a real-time electricity market, the market clearing price is
determined by the random deviation of actual power supply and
demand from the predicted values in the day-ahead market. An
energy load, which requires a total amount of energy over a cer-
tain period of time, has the flexibility of shifting its energy usage
in time, and therefore is in perfect position to exploit the volatile
real-time market price through demand response. We show that
the profit-maximizing demand response strategy can be obtained
by solving a finite-horizon Markov decision process (MDP) prob-
lem, which requires extremely high computational complexity due
to continuous state and action spaces. To tackle the high computa-
tional complexity, we propose a dual approximate approach that
transforms the MDP problem into a linear programing problem
by exploiting the threshold structure of the optimal solution. Then,
a row-generation-based solution algorithm is proposed to solve the
problem efficiently. We demonstrate through extensive simulations
that the proposed method significantly reduces the computational
complexity of the optimal MDP problem (linear versus exponen-
tial complexity), while incurring marginal performance loss. More
interestingly, the proposed demand response strategy hits a triple
win. It not only maximizes the profit of the energy load, but also al-
leviates the supply-demand imbalance in the power grid, and even
reduces the bills of other market participants. On average, the
proposed quadratic approximation and improved row generation
algorithm increases the energy load’s profit by 55.9% and saves
the bills of other utilities by 80.2% comparing with the benchmark
algorithms.

Index Terms—Demand response, electricity market, energy
load, power imbalance, MDP, column generation.
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NOMENCLATURE

Sets

� Set that defines the constraints set.
A Set of all possible actions.
S Set of all possible states.

Notation

λi Day-ahead electricity price at hour i
($/MWh).

λRT
i Real-time electricity price at hour i

($/MWh).
gi(Pi, wi) Real-time electricity bill in hour i given Pi

and wi ($).
Vi(s) Value function of hour i given residual de-

mand s ($).
�di Net deviation at hour i (MWh).
Ci(θ,α,β, si , Pi) i-th constraint of RMP.
θi, αi, βi Approximation parameters of the value

function at hour i.
di Day-ahead regulated volume of the grid at

hour i (MWh).
E Total demand in N hours (MWh).
f(w) Probability density function of the coordi-

nated imbalance w.
mi Total imbalance due to other customers at

hour i (MWh).
pi Day-ahead regulated volume of the energy

load at hour i (MWh).
si Remaining demand of the energy load from

hour i to N (MWh).
U Actual power consumption upper bound

(MWh).
wi Coordinated total imbalance at hour i.

Variable

Pi Total energy flow to the energy load at hour
i (MWh).

δi Real-time customer imbalance (MWh).

I. INTRODUCTION

THE electricity markets in Europe and the U.S. have adopted
a two-settlement structure, consisting of a day-ahead

market and a real-time market, as illustrated in Fig. 1 [1]. The

0885-8950 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1395-4383
https://orcid.org/0000-0001-6212-690X
https://orcid.org/0000-0002-7304-6849
mailto:w.shuoy@gmail.com
mailto:yjzhang@ie.cuhk.edu.hk
mailto:bsz@szu.edu.cn


6388 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 33, NO. 6, NOVEMBER 2018

Fig. 1. Illustration of a two-settlement electricity market. DA: day-ahead
market; RT: real-time market; MCP: market clearing price.

day-ahead market is a forward market, in which hourly elec-
tricity prices are calculated for each hour of the next operating
day based on generation offers, demand bids, and scheduled
bilateral transactions. Likewise, the real-time market is a spot
market, in which real-time market prices are cleared based on
deviations of the actual energy supply and demand from the day-
ahead schedule. Due to the increasing penetration of renewable
energy generation, real-time market prices are becoming more
volatile and random.

The rising number of energy storage devices (e.g., batteries
and electric vehicles) connected to the grid could lead to in-
creasing participation of energy loads in the electricity market.
Energy customers are the ones that require a total amount of
energy over a given period of time, regardless of how much
power is consumed at particular time instants. In practice, an
energy load can be an electric vehicle (EV) aggregator, a grid-
connected energy storage, etc. Being able to freely shift the
power usage over time, energy loads are in the perfect position
to exploit the volatile real-time electricity price through demand
response (DR).

DR has been extensively studied as a mechanism for elec-
tricity customers to adjust their power consumption, so that the
power demand is better matched with the supply. The benefits
of DR include increased system stability [2], reduced capital
expenditures for peak load demand [3], reduced average power
generation costs [4], lowered electricity bills for end users [5],
etc. Methods of engaging users in DR efforts include offering
time-of-use pricing, critical peak pricing, critical peak rebate,
real-time pricing, etc. [6]. For example, [5] proposed a real-time
pricing scheme that maximizes the financial benefits of both the
utility and users, where the optimal price is calculated to in-
centivise users to adjust their power consumption. The loads in
DR programs are typically classified into time-shiftable loads,
i.e., fixed-size deferrable loads with deadlines, (e.g., data-center
workloads [3], washer [7]) and elastic loads, i.e., variable-size
non-deferrable loads, (e.g., data-center cooling [3] , lighting [8]).
With the development of advanced battery technology, increas-
ingly energy loads (e.g., energy storage systems [2], EV [9])
start to participate in demand response programs. Energy loads,
which requires a total amount of energy over a certain period
of time, has the flexibility of reshaping its energy consumption
profile within the time period.

DR has recently been applied to local electricity markets [10]–
[20]. There are two main types of local electricity markets: day-
ahead and real-time markets. For day-ahead markets, various al-
gorithms have been proposed to investigate the optimal bidding

strategy through mixed-integer linear programming [10], game
theory [11], bi-level stochastic programming [12], etc. Besides,
[13] studied the impact of price-based DR programs on market
prices through simulating a day-ahead electricity market with
trading agents. Sedzro et al. [14] investigated how a cooperative
group of customers pool together their deferral loads and partic-
ipate in the day-ahead market via an aggregator. Alternatively,
the real-time market has also been taken into consideration [15]–
[20]. For instance, [15], [16] proposed price arbitrage strategies
for energy storage devices in a real-time electricity market. Mu-
ratori and Rizzoni [17] investigated an optimal residual appli-
ance schedule problem using dynamic programming that min-
imizes a cost function under time-of-use electricity price. The
above work [15]–[17] assumed that the real-time market prices
are given as exogenous variables and the DR participants are
price-takers. In practice, however, a large-scale energy load can
affect the market price. Vespermann et al. [18]–[20] studied the
offering and operation strategies of large energy storage units
that can affect the market price. However, [18], [19] are based
on a non-realistic assumption that the non-causal information of
future supply-demand profiles is perfectly known at the begin-
ning of system time. In contrast, Kohansal and Mohsenian-Rad
[20] investigated the hourly-independent economic bidding and
DR problem of times-shiftable loads through stochastic pro-
gramming.

To complement most of the previous work that does not
consider the sequential procurement and uncertain future
information in real-time markets, we investigate the opti-
mal multi-stage DR strategy that maximizes the profit of a
large-scale price-maker energy load in the real-time electricity
market. In particular, the energy load reshapes its power con-
sumption profile over time in response to the real-time deviation
of power supply and demand with respect to the predicted
values in the day-ahead market. Due to the DR activity, the
real-time power supply-demand imbalance is reshaped, thus
affecting the electricity price in the real-time market. Here,
the DR optimization problem is naturally formulated as a
stochastic Markov decision process (MDP) problem due to the
following two reasons. First, the constraint on the total energy
demand couples the decisions in different hours. Secondly, the
energy load does not have the non-causal knowledge of the
realizations of future supply-demand imbalance. Instead, only
statistical distributions can be obtained from historical data.
This is in contrast to the assumptions in [18], [19]. As such, the
energy load needs to make sequential decisions, where each
decision is made based on the causal information available until
that time instant. Nonetheless, the MDP problem formulated
is challenging in the sense that the state and action spaces are
continuous, because the total energy demand and the energy
transaction amount at each time are continuous real numbers.
The problem thus suffers the curse of dimensionality and is in
general hard to solve. Our main contributions are summarized as
follows.

� To the best of our knowledge, this is the first paper that con-
siders the multi-stage demand response of a price-maker
energy load in the real-time electricity markets, where
the energy load reshapes its energy consumption profile
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sequentially in response to the power supply-demand im-
balance of each hour. In particular, the problem is naturally
a stochastic MDP with continuous state and action spaces.

� Through rigorous analysis, we find the threshold structure
of the optimal DR solution. Based on this structure, we
can solve the MDP problem through backward induction
regardless of the continuous state and action spaces.

� To further reduce the complexity of backward induction,
we propose a quadratic-approximation formulation, which
dramatically reduces the scale of the dual problem of the
above MDP problem. The number of variables in each
stage is reduced from infinite to three.

� To efficiently solve the reduced dual problem, we derive an
improved row generation [21] based algorithm, referred to
as QARG. The proposed algorithm significantly reduces
the complexity of solving the MDP problem from exponen-
tial to linear with respect to the length of the time horizon.
We use real-world data to evaluate the proposed QARG
strategy and show that QARG hits a triple win. On aver-
age, QARG increases the energy load’s profit by 55.9% and
saves the bills of other utilities by 80.2% comparing with
a benchmark greedy algorithm. Moreover, QARG also re-
duces the mean squared imbalance of the grid, where the
reduction is 291.5% more than the reduction of the greedy
algorithm.

The rest of this paper is organized as follows. In Section II, we
introduce the system model. In Section III, we derive a thresh-
old structure optimal solution to solve the MDP problem. We
propose a quadratic approximation formulation and an efficient
row generation based algorithm to obtain a near-optimal oper-
ation strategy in Section IV. Numerical results and conclusions
are presented in Sections V and VI.

II. SYSTEM MODELS

A. Market Model

We consider a two-settlement coupled electricity market, con-
sisting of a day-ahead market and a real-time market (Fig. 1).
The day-ahead market is a forward market, in which electric-
ity prices are calculated for each hour of the next operating
day based on the submitted generation offers, demand bids, vir-
tual supply offers, virtual demand bids and bilateral transaction
schedules. Suppose that we are interested in a time period of N
hours within an operation day. Denote by di (MWh) the load
demand cleared1 in the day-ahead market at hour i, and denote
by λi ($/MWh) the corresponding clearing price.

On the other hand, the real-time market is a balancing market,
in which the electricity prices are calculated based on the actual
system operations and the day-ahead regulations. The actual en-
ergy supply and demand may deviate from the predicted values
in the day-ahead market. Suppose that the net deviation at hour
i is�di . In particular,�di > 0 implies that the actual demand
exceeds the actual energy supply and the grid issues a higher
electricity price that encourages the generators to produce more

1The cleared generation is equal to the cleared demand in the day-ahead
market.

energy and penalizes the excessive loads, and vice versa, in the
hope to reduce the imbalance.

The real-time electricity price is determined by solving a
congestion-aware optimization problem to obtain the locational
marginal prices (LMPs) based on the estimation of actual power
generation and load demand status, and also other network phys-
ical characteristics [23]. In particular, given the day-ahead clear-
ing price λi , the real-time clearing price could be interpreted as a
function of the fraction �di

di
[20], [22]. To capture the impact of

demand response to the real-time electricity price, we consider a
general monotonic non-decreasing hi(·) to model the real-time
price as a function of the real-time load imbalance:

λRT
i = hi

(�di

di

)
. (1)

In practice, the general price function covers a wide variety
of electricity pricing models influenced by either the physical
components or the regulating policies of a power grid.

B. Energy Load

We consider an energy load, e.g., a group of EV via an ag-
gregator or a group of energy storage systems, that requires a
total of E MWh energy within a certain period time. To satisfy
the demand, the energy load buys from the day-ahead market pi

(MWh) electricity at hour i. In real-time operation, the energy
load observes the power deviation from day-ahead dispatch due
to other customers, and adjusts its own power consumption by
selling or buying in the real-time market. Let δi (MWh) de-
note the amount of power the energy load buys (δi > 0) or sells
(δi < 0) in the real-time market at hour i. Then, the actual power
consumption of the energy load at hour i is Pi = pi + δi . We
restrict Pi to be non-negative, implying that the energy load
cannot feed power back to the grid. This is in accordance to the
regulation of existing markets, e.g., PJM and Nordic markets.
Moreover, Pi is upper bounded by a constant U (MWh) due
to the physical constraints of the distribution network and the
storage device. To fulfill the energy demand within N hours,
we use VN +1(s) to denote the dissatisfaction imposed to the
energy load at the end of the N -th hour for not being able to
satisfy all the demand, where VN +1(0) = 0 and VN +1(s) is a
non-decreasing convex function to indicate that the energy load
fulfills the demand as much as possible. Recall that the real-time
market price is closely related to the power imbalance from the
day-ahead schedule, i.e., (1). Suppose that the imbalance due to
other suppliers (e.g., uncertain renewable energy) and customers
(e.g., DR of other demand) at hour i is denoted by mi . Then,
we have�di = mi + δi and λRT

i = hi(mi +δi

di
). As a result, the

total real-time cost for the energy load is

N∑
i=1

hi

(
mi + δi

di

)
δi. (2)

Intuitively, with DR in the real-time market, the cost to the
energy load must be lower than in the case without DR, i.e., be
negative. The additive inverse of the real-time negative cost can
be viewed as a profit the energy load derives from the real-time
market manipulation.
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C. Problem Formulation

At the beginning of each hour i, the optimal δi is determined
based on the residual demand s and the observation of mi .
For notation simplicity, we denote wi = mi +di

m i
and the real-

time electricity bill in hour i as gi(Pi, wi) = hi(wi)(Pi − pi).
The probability density function (PDF) of wi is denoted as
f(w). When making the decision, the energy load has no prior
knowledge of the realizations of mk for k = i, i + 1, ..., N .
As such, the problem is formulated as the following stochas-
tic MDP problem [24], where the residue energy demand s is
regarded as the system state and the state transition from i to
i + 1 is determined by the decision δi as well the exogenous
variables pi .

s← s− δi − pi. (3)

The state space S and action space A are [0, E] and [0, U ],
respectively. At stage k, the objective function to solve is,

Vi(s, wi) =

min
δi

gi(pi + δi, wi) + Ewi + 1 [Vi+1(s− δi − pi, wi+1)]

s.t. − pi ≤ δi ≤ U − pi, (4)

for i = 1, ..., N , where VN +1(s, wi) = VN +1(s).
We assume that mi’s are independent random variables (the

assumption is verified in Simulation) whose distributions can be
estimated from the historical data. For simplicity of illustration,
we substitute δi by Pi − pi . Accordingly, for i = 1, . . . , N , we
can obtain the value functions of the above MDP problem from
(4) by taking expectation over wi ,

Vi(s) = Ewi

[
min
Pi

gi(Pi, wi) + Vi+1(s− Pi)
]

s.t. 0 ≤ Pi ≤ U. (5)

With the above formulation, we are interested in the optimal
strategies δi’s that yield the minimum expected total bill V1(E).
In the following sections, we introduce the methods to find the
optimal decision rule and the value of V1(E).

III. OPTIMAL STATION OPERATION

Finite horizon MDP problems can typically be solved by
backward induction, where the complexity is O(|S|N |A|N )
[24]. However, in this paper, the state space S = [0, E] and
the action space A = [0, U ] are continuous intervals and dis-
cretizing the spaces may lead to undesirable drawbacks. First,
the fine granularity of discretization causes high dimensions of
state and action spaces, which in turn leads to prohibitively high
computational complexity [2, Remark 1]. Secondly, discretiza-
tion errors may cause issues with the convergence or stability
of the MDP algorithms [25]. As a consequence, there always
exists a conflict between control accuracy and required train-
ing time. To tackle these problems, in this section, we show
that the optimal cost-to-go function is convex non-decreasing
in s and the optimal solution has a threshold structure. This en-
ables us to apply backward induction without state and action
discretization.

Lemma 1: For every s ∈ S and i = 1, . . . , N , Vi(s) is a con-
vex non-decreasing function in s.

Proof: a) Convexity: we prove the the convexity of Vi(s)
by induction. i) The terminal cost VN +1(s), is a convex func-
tion by definition. ii) Suppose that Vi+1(s) is convex for any
i ≤ N . The joint convexity of gi(Pi, wi) in (Pi, wi) is straight-
forward from the definition. This implies the joint convexity
of gi(Pi, wi) + Ewi + 1 [Vi+1(s− Pi, wi+1)] in (Pi, wi). Then,
Vi(s, wi) is convex in s. As a weighted sum of Vi(s, wi), Vi(s)
is also convex in s. i) and ii) together conclude the proof.

b) Non-decreasing: we prove the non-decreasing monotonic-
ity of Vi(s) by induction. i) The terminal cost VN +1(s) is a
non-decreasing function by definition. ii) Suppose that Vi+1(s)
is non-decreasing for any i ≤ N . For each s and wi , we denote
the optimal decision as Ps,wi

. Then, for a small φ > 0, we
have Vi+1(s + φ) + gi(Ps,wi

, wi) ≥ Vi+1(s) + gi(Ps,wi
, wi).

According to the optimality of Ps+φ,wi
, we have Vi+1(s + φ) +

gi(Ps+φ,wi
, wi) ≥ Vi+1(s + φ) + gi(Ps,wi

, wi). Substitute the
inequalities into (3), for any small φ > 0, we have

Vi(s + φ)

=
∫

[Vi+1(s + φ− Ps+φ,w ) + gi(Ps+φ,w , w)] f(w)dw

≥
∫

[Vi+1(s− Ps,w ) + gi(Ps,w , w)] f(w)dw = Vi(s). (6)

The statements in i) and ii) together conclude the proof. �
We denote the right and left derivatives of Vi(s) as

h+
i (s) � limφ→0

Vi (s+φ)−Vi (s)
φ ,∀φ ≥ 0 and h−i (s) �

limφ→0
Vi (s+φ)−Vi (s)

φ ,∀φ ≤ 0, respectively. In the follow-
ing Theorem 1, we derive a threshold structure of the optimal
policy from Lemma 1. The threshold is to compare the
derivative of gi(s, wi) with that of Vi(s, wi) for given a wi .

Theorem 1: The threshold structure of the optimal policy for
hour i is,

P ∗i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

U, if h−i+1(s− U) ≥ ∂gi(U,wi)
∂P

0, if h+
i+1(s) ≤

∂gi(0, wi)
∂P

x, otherwise,

where x = sup
{

x : h+
i+1(s− x) ≥ ∂gi(x,wi)

∂P

}
.

(7)

Due to page limit, we omit the proof here. The main idea
of the proof is as follows. Lemma 1, together with the fact
that gi(Pi, ωi) is a quadratic function, implies that Problem (5)
is a convex problem with linear constraints. Consequently, the
Karush-Kuhn-Tucker (KKT) conditions are the necessary and
sufficient conditions for optimality. By manipulating the KKT
conditions of (5), we have Theorem 1.

Intuitively, P ∗i is the value that achieves the balance between
the expected future bill and the current bill. In particular, if
the marginal expected future bill is no-larger than the marginal
current bill P ∗i = 0 and if the marginal expected future bill is
no-less than the marginal current bill P ∗i = U . Furthermore,
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Algorithm 1: Backward Induction to Find Optimal {P ∗i }.
Initialization: Vn+1(s), f(w), h−n+1(s), h+

n+1(s),
{di}, {λi}, {pi}

1: for i = N down to 1 do
2: Compute P ∗i using (7)
3: Compute Vi(s, wi) using (8)
4: Take the integral of Vi(s, wi) over wi and then take

the derivative of Vi(s) to get h+
i (s) and h−i (s)

5: end for
Output: {P ∗i }

substituting (7) into (4), we have,

Vi(s, wi) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gi(U,wi) + Vi+1(s− U), if h−i+1(s− U) ≥ ∂gi(U,wi)
∂P

gi(0, wi) + Vi+1(s), if h+
i+1(s) ≤

∂gi(0, wi)
∂P

gi(x,wi) + Vi+1(s− x), otherwise,

where x = sup
{

x : h+
i+1(s− x) ≥ ∂gi(x,wi)

∂P

}
.

(8)

Thanks to (7) and (8), we can find the optimal {P ∗i } through
Algorithm 1.

According to (8), Vi(s, wi) is a piecewise-defined function.
The number of sub-functions increases by three times when
we process from Vi+1(s) to Vi(s, wi). Therefore, although the
threshold structure approach provides an optimal solution with-
out the need of space discretization, the computational com-
plexity of Vi(s) still increases with the number of stages expo-
nentially. This renders backward induction unscalable with the
length of the time horizon. To address this issue, we propose a
reduced-complexity suboptimal algorithm based on a quadratic
approximation of Vi(s) in Section IV.

IV. QUADRATIC APPROXIMATION AND IMPROVED

ROW GENERATION ALGORITHM

In this section, we propose an approximate algorithm, referred
to as QARG, to reduce the complexity of solving the MDP
problem. In particular, we apply a quadratic approximation on
the dual problem of (5). Then, the problem is solved by an
improved row-generation method.

A. Dual Problem and Quadratic Approximation

According to [24], the minimum expected total bill V1(E)
in (5) can be obtained by solving the following dual

problem,

max
{Pi }

V1(E)

s.t. Vi(s)−
∫

[gi(Pi, w) + Vi+1(s− Pi)] f(w)dw

≤ 0, ∀s ∈ S,∀i = 1, . . . , N

Vi(s) ∈ R, ∀s ∈ S,∀i = 1, . . . , N

0 ≤ Pi ≤ U. (9)

In general, the dual problem does not reduce the complexity
of MDP problems. One effective method to reduce the com-
plexity is to approximate Vi(s) by a polynomial function [25].
As gi(P,w) is a quadratic function of P and Vi(s) is convex
non-decreasing in s, it is reasonable to approximate Vi(s) by a
quadratic function

Vi(s) ≈ θi + αis + βis
2 ,∀i = 1, . . . , N. (10)

If θi , αi , and βi are known parameters, we can simplify the
decision rules in Theorem 1. Taking the derivative of (10),
we have h−i+1(s) = h+

i+1(s) = αi + 2βis. Substituting it into
Theorem 1, we have the following Proposition 1.

Proposition 1: If the cost-to-go function of stage i is θi +
αis + βis

2 , the optimal decision at stage i is

P ∗i =

[
−λiwi + 2λi pi

di
+ (αi+1 + 2βi+1)s

2βi+1 + 2λi

di

]U

0

(11)

Proposition 1 specifies the fixed decision rule without any
recursion when the parameters {θ,α,β} are given, where θ �
(θ1 , . . . , θN ), β � (β1 , . . . , βN ), and α � (α1 , . . . , αN ). In the
following, we propose an efficient algorithm to calculate these
parameters. For notation simplicity, we define

Ci(θ,α,β, s, P ) � θi − θi+1 +(αi − αi+1) s+(βi − βi+1) s2

+
∫ [

αi+1P − gi(P,w) + βi+1
(
2Ps− P 2)] f(w)dw,

(12)

for i = 1, . . . , N − 1 and

CN (θ,α,β, s, P ) � θN − θN +1

+ (αN − αN +1) s + (βN − βN +1) s2

+
∫ [

αN +1P − gN (P,w) + βN +1
(
2Ps− P 2)] f(w)dw.

(13)

Substituting (10) into (9) yields an approximated linear pro-
gramming problem as follows.

max
θ,α,β

θ1 + α1E + β1E
2 [ALP]

s.t. Ci(θ,α,β, si , Pi) ≤ 0,∀s ∈ S,∀Pi ∈ [0, U ],

i = 1, . . . , N. (14)

The approximated linear programming [ALP] reduces the num-
ber of variables in (8) from infinite to 3N with the same number
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of constraints. Nonetheless, the number of constraints remains
infinite due the continuous state space. Row generation is a pow-
erful tool for solving large-scale linear programming problems.
However, the standard cutting problem of (14) is still a large-
scale linear programming and thus direct application of standard
row generation to (14) may suffer a large number of iterations
and a long convergence time [26]. In the following, we develop
an improved row generation based solution approach to handle
the challenge [27].

B. Improved Row Generation Based Algorithm

The framework of the proposed algorithm is to solve [ALP]
by iteratively solving two sub-problems, i.e., Restricted Master
Problem [RMP] and Cutting Problem [CP]. [RMP] is formed
by replacing the constraints in [ALP] by a small but meaningful
subset of the constraints. The optimal values of [RMP] are used
to determine whether there exist feasible (si, Pi)’s that can cut
out some infeasible solutions of [ALP]. This procedure is for-
mulated as [CP]. We name (si, Pi) as a “row”, because (si, Pi)
adds constraints to [RMP] to cut out infeasible solutions. If the
potential cutting row(s) exist, we add the corresponding con-
straints to the subset and re-solve the new [RMP]. This process
repeats until no new rows can be found [27]. The details of
[RMP] and [CP] are as follows.

1) Restricted Master Problem: Without loss of general-
ity, we start with the initial set � = {(si, Pi)|Pi = pi, si =
E −∑i−1

j=1 pj ,∀i = 1, . . . , N} and solve (13) with a set of con-
straints defined by (si, Pi) ∈ �:

max
θ,α,β

θ1 + α1E + β1E
2 [RMP]

s.t. Ci(θ,α,β, si , Pi) ≤ 0,∀(si, Pi) ∈ �,

i = 1, . . . , N. (15)

The optimal value of [RMP] is an upper bound of the one of
[ALP], as the constraints of [RMP] are a subset of the con-
straints in [ALP]. Notice that the optimal solution may not be
unique. In this case, we consider a non-decreasing-β optimal
solution (θ0 ,α0 ,β0), i.e., β0

i ≤ β0
i+1 ∀ i = 1, . . . , N . Besides,

Lemma 2 guarantees the existence of the non-decreasing-β so-
lution, which ensures the concavity of [CP].

Lemma 2: There is always an optimal solution (θ0 ,α0 ,β0)
that the entries of β0 are always in non-decreasing order, i.e.,
β0

i ≤ β0
i+1 ∀i = 1, . . . , N .

Proof: We assume that there exists an optimal so-
lution (θ,α,β) where βj < βj−1 . We denote β

′
=

(β1 , . . . , βj−2 , βj−1 , βj−1 , βj+1 , . . . , βN ). Substituting β
′

into
[ALP], we have that (θ,α,β

′
) also satisfies all the constraints

and achieves the same θ1 + α1E + β
′
1E

2 . Repeating the above
process, for any set of optimal solutions, we can always find
a non-decreasing β0 = (β0

1 , β0
2 , . . . , β0

N ) where (θ,α,β0) is
also an optimal solution. �

2) Cutting Problem: Our next task is to find a (si, Pi) such
that � ∪ (si, Pi) results in a tighter upper bound of the [ALP]
than the one with �. Specifically, the typical cutting problem
finds a row with the largest C1 and non-positive C2 , . . . , CN
[27]. In fact, it is not necessary to select the largest C1 . Given

(θ,α,β), any row with positive Ci , i.e., violating the constraint
in (13), is a candidate to be a row [28]. In particular, given the
optimal solution (θ0 ,α0 ,β0) of (RMP), we find the row (si, Pi)
that maximize the Ci ,

max
s,P

Ci(θ0 ,α0 ,β0 , s, P ) [CP]i

s.t. s ∈ S,

0 ≤ P ≤ U, (16)

for i = 1, . . . , N . The coefficient of quadratic terms in the ob-
jective function of (16), i.e., βi − βi+1 and −βi+1 are both
negative according to Lemma 2. By calculating the determinant
of the Hessian matrix, we can show that [CP]1 , ..., [CP]N are
concave maximization problems. The KKT conditions of [CP]i
are (

α0
i − α0

i+1
)
+2

(
β0

i − β0
i+1

)
s + 2β0

i+1P + μ1 − μ2 =0,

α0
i+1 − λi +

2λiP

di
− 2λipi

di
− β0

i+1 (2P − 2s) + ω1 − ω2 =0,

μ1s=0, −μ2(s− smax) = 0, ω1P = 0, −ω2(P − U)=0,
(17)

where μ1 , μ2 , ω1 , and ω2 are the Lagrange multipliers. The
row (s, P ) is solved by the boundary conditions of (s, P ). If
the maximum value of [CP]i is positive, we update � = � ∪
(s, P ). If |�| increases after checking [CP]1 , ..., [CP]N , we
return a new RMP. Otherwise, at this point, the optimal solution
to [RMP] satisfy all the constraints of [ALP] and thus is the
optimal solution to [ALP]. We terminate the algorithm.

On the one hand, because the objective function and con-
straints are only related to (θ0 ,α0 ,β0) and �, the update of
Ci are independent. Therefore, we can solve [CP]1 , ..., [CP]N
parallelly, which greatly reduces the computational time. On the
other hand, each update reduces the objective value in (15), and
thus convergence is guaranteed. The algorithm described above
is summarized in Algorithm 2.

V. SIMULATION RESULTS

In this section, we use real-world data to evaluate the per-
formance of QARG. Without loss of generality, we consider a
10-hour time period (from 9:00 to 18:00) in all simulations. All
the simulation results are the average performance of 90 days.
The upper bound of the actual demand in each hour U is set as
50 MWh throughout the simulations.

A. Experimental Setup

We base our simulations on the historical hourly data, i.e., the
regulated bidding volumes of day-ahead market di (Fig. 2(a)),
the day-ahead electricity prices λi (Fig. 2(b)), and the real-
time imbalances mi (Fig. 2(c)) of the Finland Grid in Nordic
electricity market [29]. We use the scaled regulated bidding
volume of Finland-to-Estonia (Fig. 2(d)) in Nordic electricity
market to model the energy load’s regulated bidding volumes of
each hour pi , where the average total regulated bidding volume
is set equal to the total demands in different demand scenarios
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Algorithm 2: Improved Row Generation Based Algorithm.

Initialization: � ← {(si, Pi)|P = pi, si = E −∑i−1
j=1 pj ,

∀i = 1, . . . , N}, F ← true
1: do
2: Z ← |�|.
3: (θ,α,β)← the optimal solution of [RMP] given �
4: Formulate [CP]1 , ..., [CP]N with the optimal

(θ,α,β)
5: for i = 1 up to N do
6: (s∗i , P

∗
i )← the optimal solution of [CP ]i

7: v∗i ← the optimal value of [CP ]i
8: if v∗i > 0 then
9: � = � ∪ (s∗i , P

∗
i )

10: end if
11: end for
12: if |�| �= Z then
13: F ← false;
14: end if
15: while F

Output: (θ,α,β)

(e.g., Fig. 5). The data set spans the first 3 months of 2017.
The cumulative density function of mi during this time period
is plotted in Fig. 2(e). For simplicity, in our simulation, we
use a linear function, i.e., λRT

i = λi(mi +δi

di
), as the real-time

price function [30]. For performance comparison, we consider
the optimal backward induction solution (BI) [13], [20], the
Greedy policy [17], and heuristic-greedy policy (HG) [14] as
benchmarks.

� Greedy policy: In each stage, the energy load makes the
buying/selling decision that minimizes the energy bill
by ignoring the possible DR operation in the rest of
time, i.e., setting δj = 0, for j = i + 1, . . . , N . In par-
ticular, the energy load make the decision δGreedy

i (s) =
arg minδ λi(wi + 1

di
δ)δ + VN +1(s−

∑N
j=i+1 pj − δ).

� HG: In each stage, the energy load makes the de-
cision δHG

i (s) = arg minδ λi(wi + 1
di

δ)δ + εVN +1(s−∑N
j=i+1 pj − δ), where ε = ε1 when wi > 1, ε = ε2 when

wi < 1, and ε = 1 otherwise. The selection of the value of
the predetermined weights ε1 and ε2 are numerically stud-
ied and set as 1.02 and 0.96 in our experiment, respectively.

B. Independence Validation

An underlying assumption of our analysis is that mi is i.i.d.
for different i and orthogonal to λi . From Fig. 3(c), mi is a
first-order stationary process with zero mean. To validate the
assumption of independence, we plot the auto-correlations and
cross-correlations of the variables in Figs. 3(a) and (b), respec-
tively. As we can see from Fig. 3(a), the auto-correlations of the
variables reach the peak when the time lag is 0 and are close
to zero at non-zero time lags, implying that mi’s are approxi-
mately mutually independent. Likewise, Fig. 3(b) shows that the
cross-correlations of the variables are all close to zero, implying
that m are approximately orthogonal to λ.

Fig. 2. Data for conducting simulations. (a) The bidding volumes of day-
ahead market of Finland Grid. (b) The day-ahead hourly prices of Finland
Grid. (c) The hourly load imbalance of Finland Grid. (d) The scaled real data
regulated volume of Finland to Estonia. (e) Empirical cumulative distribution
function of m.

C. Profit Performance

In this subsection, we investigate how the demand response
strategy and profit of energy load versus the total demand E.

In Fig. 4, we show the optimized demand response using
data from 2017/02/01 to 2017/02/03 as an example. Overall, we
observe that when the real-time imbalance is negative (Fig. 4(a)),
the energy load buys extensive power from the grid, i.e., δ > 0,
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Fig. 3. Independence validation. (a) Auto-correlations of m. (b) Cross-
correlations of m and λ. (c) Mean of m.

Fig. 4. Optimized demand response decision examples. (a) Real-time imbal-
ance from 2017/02/01 to 2017/02/03. (b) Real-time decision from 2017/02/01
to 2017/02/03.

and vice versa. When the total demand and day-ahead regulated
volume is large, the real-time decision is more aggressive in
terms of the amount of real-time operation is much larger than
the amount when E is small. This is because the selling operation
is upper bounded by the day-ahead trading volume. In brief, the
inverse correlation between the optimal demand strategy and the

Fig. 5. Average total bill evaluation versus E .

real-time imbalance indicates that QARG reduces the imbalance
of the grid.

In Fig. 5, we compare the average profit per day achieved by
the three schemes with the same day-ahead bid realization, i.e.,
same day-ahead bidding volumes. Besides, we also plot the 95%
confidence interval of QARG. In particular, we vary the total
demand E from 100 MWh to 200 MWh and evaluate the each
day’s profit. For each value of E, the day-ahead bid realization
is scaled so that the mean of accumulated bid realizations in
each day is equal to E. The figure shows that QARG performs
closely to the optimal BI approach and the performance gap
does not increase with E. Overall, QARG outperforms the av-
erage greedy method profit performance with confidence level
95%. On average, the gap between QARG and BI is only 1.36%
to 4.77% of the average profit achieved by BI. QARG achieves
55.9% and 50.1% higher profit than the Greedy method and HG,
respectively. Furthermore, the percentile loss decreases as the
load increases. In contrast, the Greedy method and HG perform
poorly with a widening performance gap over the increase of
E. This is because, when E is large, the Greedy method and
HG tend to buy excessive energy at over-load period to eagerly
satisfy E, which leads to a very high bill due to high electricity
price. The proposed QARG method and BI can anticipate the
future time-varying electricity price, thus can manage the elec-
tricity bill through buying energy only at off-peak hours and
selling energy at overload period.

D. Impact to the Grid

The large grid supply-demand imbalance can result in large
generation cost, large power loss, system security issues, etc.
Therefore, minimizing the imbalance helps to improve the ef-
ficiency and reliability of the power grid. Apart from earning
profit for the energy load, QARG also reduces the grid imbal-
ance. Note that the imbalances can be both positive and negative.
Thus, we use mean squared imbalance as a metric in Fig. 6. In
particular, we show the mean squared imbalance of the grid as
a function of to different amounts of demand, i.e., E, when BI,
QARG, Greedy, and HG schemes are applied, respectively. On
average, the original mean squared imbalance without any regu-
lation and the mean squared imbalance achieved by BI, QARG,
the Greedy method, and HG are 161.2 MWh2 , 138.9 MWh2 ,
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Fig. 6. Comparison of the achieved mean squared imbalance of regulated
imbalance versus E .

Fig. 7. Comparison of the bills of other utilities versus E .

144.0 MWh2 , 155.3 MWh2 , and 153.7 MWh2 respectively. It
can be seen that the mean squared imbalance of QARG and the
three benchmark methods decrease with the demand when the
demand is small and increase with the demand when the demand
is large. It is because that when the demand is small, increased
demand strengthens the ability to buy at off-load periods, and
when the demand is large, this undermines the ability to sell
at over-load periods. Meanwhile, the gaps between the mean
squared imbalance obtained by QARG, the Greedy method,
and HG increase with the demand. Recall that when the demand
is large, without overall planning, the Greedy method and HG
tend to buy energy at over-load period to fulfill the demand. In
contrast, the QARG strategy reduces the grid imbalance with
off-load buying and over-load selling.

Besides, QARG reduces not only the grid imbalance but also
the the bills of the other utilities in the grid. In Fig. 7, we show
the average bills of another utility in the same grid. For each
demand, we evaluate the average bill over 90 days. In each hour,
we assume there are 10 other utilities with zero-mean random
imbalance in the grid. The realizations of the random imbalances
are scaled such that the total imbalance is equal to the real-data.

Fig. 8. Comparison of computational time versus E .

The bill is averaged over 100 imbalance realizations of partic-
ular utility. On average, the reduced bill achieved BI, QARG,
the Greedy method, and HG are 677.9 $, 592.3 $, 375.8 $,
and 390.9 $, respectively. The figure, together with Figs. 5 and 6,
shows that QARG not only reduces the bill of the energy load
itself but also the bills of other utilities and the imbalance of the
local grid. Hence, it is a triple-win solution.

E. Computational Time Performance

In Fig. 8, we compare the computational time of QARG and
the corresponding BI. For each number of stages, the compu-
tation is the average computational time of 90 days price re-
alizations with 10 random demands for each day. In line with
expectations, on one hand, the computational times of QARG
is linearly increasing with the number of stages. On the other
hand, the computational time of BI is exponentially increasing
with the number of stages. This, together with Fig. 5, implies
that QARG is a complexity-friendly and near-optimal strategy.

VI. CONCLUSION

In this paper, we proposed a profit-maximizing demand re-
sponse scheme for an energy load in response to the real-
time supply-demand imbalance in a real-time electricity market.
We formulate the DR optimization problem into an MDP, and
showed that the optimal solution possesses a threshold structure.
Based on the threshold structure, we deduce a backward induc-
tion scheme to solve the MDP without the need of discretizing
the state and action spaces. To further reduce the computational
complexity, we proposed a QARG algorithm based on quadratic
approximation and improved row generation strategies. Simu-
lation results showed that QARG considerably outperforms the
benchmark algorithms in terms of both the performance and
complexity. Furthermore, it hits a triple win, in the sense that
the real-time supply-demand imbalance is reduced, and the elec-
tricity bills of other market participants are reduced.
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