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Abstract—Wireless powered mobile-edge computing (MEC) has recently emerged as a promising paradigm to enhance the data

processing capability of low-power networks, such as wireless sensor networks and internet of things (IoT). In this paper, we consider a

wireless powered MEC network that adopts a binary offloading policy, so that each computation task of wireless devices (WDs) is either

executed locally or fully offloaded to an MEC server. Our goal is to acquire an online algorithm that optimally adapts task offloading

decisions and wireless resource allocations to the time-varying wireless channel conditions. This requires quickly solving hard

combinatorial optimization problems within the channel coherence time, which is hardly achievable with conventional numerical

optimization methods. To tackle this problem, we propose a Deep Reinforcement learning-based Online Offloading (DROO) framework

that implements a deep neural network as a scalable solution that learns the binary offloading decisions from the experience. It

eliminates the need of solving combinatorial optimization problems, and thus greatly reduces the computational complexity especially

in large-size networks. To further reduce the complexity, we propose an adaptive procedure that automatically adjusts the parameters

of the DROO algorithm on the fly. Numerical results show that the proposed algorithm can achieve near-optimal performance while

significantly decreasing the computation time by more than an order of magnitude compared with existing optimization methods. For

example, the CPU execution latency of DROO is less than 0.1 second in a 30-user network, making real-time and optimal offloading

truly viable even in a fast fading environment.

Index Terms—Mobile-edge computing, wireless power transfer, reinforcement learning, resource allocation

Ç

1 INTRODUCTION

DUE to the small form factor and stringent production
cost constraint, modern Internet of Things (IoT) devi-

ces are often limited in battery lifetime and computing
power. Thanks to the recent advance in wireless power trans-
fer (WPT) technology, the batteries of wireless devices
(WDs) can be continuously charged over the air without the
need of battery replacement [1]. Meanwhile, the device
computing power can be effectively enhanced by the recent
development of mobile-edge computing (MEC) technology [2],
[3]. With MEC, the WDs can offload computationally inten-
sive tasks to nearby edge servers to reduce computation
latency and energy consumption [4], [5].

The newly emerged wireless powered MEC combines the
advantages of the two aforementioned technologies, and
thus holds significant promise to solve the two funda-
mental performance limitations for IoT devices [6], [7]. In

this paper, we consider a wireless powered MEC system
as shown in Fig. 1, where the access point (AP) is respon-
sible for both transferring RF (radio frequency) energy to
and receiving computation offloading from the WDs. In
particular, the WDs follow a binary task offloading policy
[8], where a task is either computed locally or offloaded
to the MEC server for remote computing. The system
setup may correspond to a typical outdoor IoT network,
where each energy-harvesting wireless sensor computes a
non-partitionable simple sensing task with the assistance
of an MEC server.

In a wireless fading environment, the time-varying wire-
less channel condition largely impacts the optimal offload-
ing decision of a wireless powered MEC system [9]. In a
multi-user scenario, a major challenge is the joint optimiza-
tion of individual computing mode (i.e., offloading or local
computing) and wireless resource allocation (e.g., the trans-
mission air time divided between WPT and offloading).
Such problems are generally formulated as mixed integer
programming (MIP) problems due to the existence of binary
offloading variables. To tackle the MIP problems, branch-
and-bound algorithms [10] and dynamic programming [11]
have been adopted, however, with prohibitively high
computational complexity, especially for large-scale MEC
networks. To reduce the computational complexity, heuris-
tic local search [7], [12] and convex relaxation [13], [14]
methods are proposed. However, both of them require
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considerable number of iterations to reach a satisfying local
optimum. Hence, they are not suitable for making real-time
offloading decisions in fast fading channels, as the optimiza-
tion problem needs to be re-solved once the channel fading
has varied significantly.

In this paper, we consider a wireless powered MEC net-
work with one AP and multiple WDs as shown in Fig. 1,
where eachWD follows a binary offloading policy. In partic-
ular, we aim to jointly optimize the individualWD’s task off-
loading decisions, transmission time allocation between
WPT and task offloading, and time allocation among multi-
ple WDs according to the time-varying wireless channels.
Towards this end, we propose a deep reinforcement learn-
ing-based online offloading (DROO) framework tomaximize
the weighted sum of the computation rates of all the WDs,
i.e., the number of processed bits within a unit time. Com-
pared with the existing integer programming and learning-
basedmethods, we have the following novel contributions:

1) The proposed DROO framework learns from the
past offloading experiences under various wireless
fading conditions, and automatically improves its
action generating policy. As such, it completely
removes the need of solving complex MIP problems,
and thus, the computational complexity does not
explode with the network size.

2) Unlike many existing deep learning methods that
optimize all system parameters at the same time
resulting infeasible solutions, DROO decomposes
the original optimization problem into an offloading
decision sub-problem and a resource allocation sub-
problem, such that all physical constraints are
guaranteed. It works for continuous state spaces
and does not require the discretization of channel
gains, thus, avoiding the curse of dimensionality
problem.

3) To efficiently generate offloading actions, we devise
a novel order-preserving action generation method.

Specifically, it only needs to select from few candidate
actions each time, thus is computationally feasible and
efficient in large-size networks with high-dimensional
action space. Meanwhile, it also provides high
diversity in the generated actions and leads to better
convergence performance than conventional action
generation techniques.

4) We further develop an adaptive procedure that auto-
matically adjusts the parameters of the DROO algo-
rithm on the fly. Specifically, it gradually decreases
the number of convex resource allocation sub-prob-
lems to be solved in a time frame. This effectively
reduces the computational complexity without
compromising the solution quality.

We evaluate the proposed DROO framework under
extensive numerical studies. Our results show that on aver-
age the DROO algorithm achieves over 99.5 percent of the
computation rate of the existing near-optimal benchmark
method [7]. Compared to the Linear Relaxation (LR) algo-
rithm [13], it significantly reduces the CPU execution
latency by more than an order of magnitude, e.g., from 0.81
second to 0.059 second in a 30-user network. This makes
real-time and optimal design truly viable in wireless pow-
ered MEC networks even in a fast fading environment. The
complete source code implementing DROO is available at
https://github.com/revenol/DROO.

The remainder of this paper is organized as follows. In
Section 2, a review of relatedworks in literature is presented.
In Section 3, we describe the system model and problem for-
mulation. We introduce the detailed designs of the DROO
algorithm in Section 4. Numerical results are presented in
Section 5. Finally, the paper is concluded in Section 6.

2 RELATED WORK

There are many related works that jointly model the com-
puting mode decision problem and resource allocation
problem in MEC networks as the MIP problems. For
instance, [7] proposed a coordinate descent (CD) method
that searches along one variable dimension at a time. [12]
studies a similar heuristic search method for multi-server
MEC networks, which iteratively adjusts binary offloading
decisions. Another widely adopted heuristic is through con-
vex relaxation, e.g., by relaxing integer variables to be con-
tinuous between 0 and 1 [13] or by approximating the
binary constraints with quadratic constraints [14]. Nonethe-
less, on one hand, the solution quality of the reduced-com-
plexity heuristics is not guaranteed. On the other hand,
both search-based and convex relaxation methods require
considerable number of iterations to reach a satisfying local
optimum and are inapplicable for fast fading channels.

Our work is inspired by recent advantages of deep rein-
forcement learning in handling reinforcement learning prob-
lems with large state spaces [15] and action spaces [16]. In
particular, it relies on deep neural networks (DNNs) [17]
to learn from the training data samples, and eventually
produces the optimal mapping from the state space to the
action space. There exists limited work on deep reinforce-
ment learning-based offloading for MEC networks [18], [19],
[20], [21], [22]. By taking advantage of parallel computing,
[19] proposed a distributed deep learning-based offloading

Fig. 1. An example of the considered wireless powered MEC network
and system time allocation.
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(DDLO) algorithm for MEC networks. For an energy-
harvesting MEC networks, [20] proposed a deep Q-network
(DQN) based offloading policy to optimize the computa-
tional performance. Under the similar network setup, [21]
studied an online computation offloading policy based on
DQN under random task arrivals. However, both DQN-
based works take discretized channel gains as the input state
vector, and thus suffer from the curse of dimensionality and
slow convergence when high channel quantization accuracy
is required. Besides, because of its exhaustive search nature
in selecting the action in each iteration, DQN is not suitable
for handling problems with high-dimensional action spaces
[23]. In our problem, there are a total of 2N offloading
decisions (actions) to choose from, where DQN is evidently
inapplicable even for a smallN , e.g.,N ¼ 20.

3 PRELIMINARY

3.1 System Model

As shown in Fig. 1, we consider a wireless powered MEC
network consisting of an AP and N fixed WDs, denoted as a
set N ¼ f1; 2; . . .; Ng, where each device has a single
antenna. In practice, this may correspond to a static sensor
network or a low-power IoT system. The AP has stable
power supply and can broadcast RF energy to theWDs. Each
WD has a rechargeable battery that can store the harvested
energy to power the operations of the device. Suppose that
the AP has higher computational capability than theWDs, so
that the WDs may offload their computing tasks to the AP.
Specifically, we suppose that WPT and communication
(computation offloading) are performed in the same fre-
quency band. Accordingly, a time-division-multiplexing
(TDD) circuit is implemented at each device to avoid mutual
interference betweenWPT and communication.

The system time is divided into consecutive time frames
of equal lengths T , which is set smaller than the channel
coherence time, e.g., in the scale of several seconds [24], [25],
[26] in a static IoT environment. At each tagged time, both
the amount of energy that a WD harvests from the AP and
the communication speed between them are related to the
wireless channel gain. Let hi denote the wireless channel
gain between the AP and the ith WD at a tagged time frame.
The channel is assumed to be reciprocal in the downlink and
uplink,1 and remain unchanged within each time frame, but
may vary across different frames. At the beginning of a time
frame, aT amount of time is used for WPT, a 2 ½0; 1�, where
the AP broadcasts RF energy for the WDs to harvest. Specifi-
cally, the ith WD harvests Ei ¼ mPhiaT amount of energy,
where m 2 ð0; 1Þ denotes the energy harvesting efficiency
and P denotes the AP transmit power [1].With the harvested
energy, each WD needs to accomplish a prioritized comput-
ing task before the end of a time frame. A uniqueweightwi is
assigned to the ith WD. The greater the weight wi, the more
computation rate is allocated to the ithWD. In this paper, we
consider a binary offloading policy, such that the task is
either computed locally at the WD (such as WD2 in Fig. 1) or
offloaded to the AP (such as WD1 and WD3 in Fig. 1). Let

xi 2 f0; 1g be an indicator variable, where xi ¼ 1 denotes
that the ith user’s computation task is offloaded to the AP,
and xi ¼ 0 denotes that the task is computed locally.

3.2 Local Computing Mode

A WD in the local computing mode can harvest energy and
compute its task simultaneously [6]. Let fi denote the pro-
cessor’s computing speed (cycles per second) and 0 � ti �
T denote the computation time. Then, the amount of proc-
essed bits by the WD is fiti=f, where f > 0 denotes the
number of cycles needed to process one bit of task data.
Meanwhile, the energy consumption of the WD due to the
computing is constrained by kif

3
i ti � Ei, where ki denotes

the computation energy efficiency coefficient [13]. It can be
shown that to process the maximum amount of data within
T under the energy constraint, a WD should exhaust the
harvested energy and compute throughout the time frame,

i.e., t�i ¼ T and accordingly f�i ¼ Ei
kiT

� �1
3
. Thus, the local com-

putation rate (in bits per second) is

r�L;iðaÞ ¼
f�
i t

�
i

fT
¼ h1

hi

ki

� �1
3

a
1
3; (1)

where h1 , mPð Þ
1
3=f is a fixed parameter.

3.3 Edge Computing Mode

Due to the TDD constraint, a WD in the offloading mode
can only offload its task to the AP after harvesting energy.
We denote tiT as the offloading time of the ith WD,
ti 2 ½0; 1�. Here, we assume that the computing speed and
the transmit power of the AP is much larger than the size-
and energy-constrained WDs, e.g., by more than three
orders of magnitude [6], [9]. Besides, the computation feed-
back to be downloaded to the WD is much shorter than the
data offloaded to the edge server. Accordingly, as shown in
Fig. 1, we safely neglect the time spent on task computation
and downloading by the AP, such that each time frame is
only occupied by WPT and task offloading, i.e.,

XN
i¼1

ti þ a � 1: (2)

To maximize the computation rate, an offloading WD
exhausts its harvested energy on task offloading, i.e.,
P �
i ¼ Ei

tiT
. Accordingly, the computation rate equals to its

data offloading capacity, i.e.,

r�O;iða; tiÞ ¼
Bti
vu

log 2 1þ mPah2
i

tiN0

� �
; (3)

where B denotes the communication bandwidth and N0

denotes the receiver noise power.

3.4 Problem Formulation

Among all the system parameters in (1) and (3), we assume
that only the wireless channel gains h ¼ fhiji 2 Ng are
time-varying in the considered period, while the others
(e.g., wi’s and ki’s) are fixed parameters. Accordingly, the
weighted sum computation rate of the wireless powered
MEC network in a tagged time frame is denoted as

1. The channel reciprocity assumption is made to simplify the nota-
tions of channel state. However, the results of this paper can be easily
extended to the case with unequal uplink and downlink channels.
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Q h; x; tt; að Þ ,
XN
i¼1

wi ð1� xiÞr�L;iðaÞ þ xir
�
O;iða; tiÞ

� �
;

where x ¼ fxiji 2 Ng and tt ¼ ftiji 2 Ng.
For each time frame with channel realization h, we are

interested in maximizing the weighted sum computation
rate:

ðP1Þ : Q� hð Þ ¼ maximize
x;tt;a

Q h; x; tt; að Þ (4a)

subject to
XN
i¼1

ti þ a � 1; (4b)

a � 0; ti � 0; 8i 2 N ; (4c)

xi 2 f0; 1g: (4d)

We can easily infer that ti ¼ 0 if xi ¼ 0, i.e., when the ith
WD is in the local computing mode.

Problem (P1) is a mixed integer programming non-con-
vex problem, which is hard to solve. However, once x is
given, (P1) reduces to a convex problem as follows.

ðP2Þ : Q� h; xð Þ ¼ maximize
tt;a

Q h; x; tt; að Þ

subject to
XN
i¼1

ti þ a � 1;

a � 0; ti � 0; 8i 2 N :

Accordingly, problem (P1) can be decomposed into two
sub-problems, namely, offloading decision and resource
allocation (P2), as shown in Fig. 2:

� Offloading Decision: One needs to search among the
2N possible offloading decisions to find an optimal
or a satisfying sub-optimal offloading decision x. For
instance, meta-heuristic search algorithms are pro-
posed in [7] and [12] to optimize the offloading deci-
sions. However, due to the exponentially large
search space, it takes a long time for the algorithms
to converge.

� Resource Allocation: The optimal time allocation
a�; tt�f g of the convex problem (P2) can be efficiently

solved, e.g., using a one-dimensional bi-section
search over the dual variable associated with the
time allocation constraint in OðNÞ complexity [7].

The major difficulty of solving (P1) lies in the offload-
ing decision problem. Traditional optimization algorithms
require iteratively adjusting the offloading decisions
towards the optimum [11], which is fundamentally

infeasible for real-time system optimization under fast fad-
ing channel. To tackle the complexity issue, we propose a
novel deep reinforcement learning-based online offloading
algorithm that can achieve a millisecond order of computa-
tional time in solving the offloading decision problem.

Before leaving this section, it is worth mentioning
the advantages of applying deep reinforcement learning over
supervised learning-based deep neural network approaches
(such as in [27] and [28]) in dynamic wireless applications.
Other than the fact that deep reinforcement learning does not
need manually labeled training samples (e.g., the h; xð Þ pairs
in this paper) as DNN, it ismuchmore robust to the change of
user channel distributions. For instance, the DNN needs to be
completely retrained once some WDs change their locations
significantly or are suddenly turned off. In contrast, the
adopted deep reinforcement learning method can automati-
cally update its offloading decision policy upon such channel
distribution changes without manual involvement. Those
important notations used throughout this paper are summa-
rized in Table 1.

4 THE DROO ALGORITHM

We aim to devise an offloading policy function p that
quickly generates an optimal offloading action x� 2

Fig. 2. The two-level optimization structure of solving (P1).

TABLE 1
Notations Used throughout the Paper

Notation Description

N The number of WDs
T The length of a time frame
i Index of the ith WD
hi The wireless channel gain between the ith WD

and the AP
a The fraction of time that the AP broadcasts RF

energy for the WDs to harvest
Ei The amount of energy harvested by the ith WD
P TheAP transmit powerwhenbroadcasts RF energy
m The energy harvesting efficiency
wi The weight assigned to the ith WD
xi An offloading indicator for the ith WD
fi The processor’s computing speed of the ith WD
f The number of cycles needed to process one bit of

task data
ti The computation time of the ith WD
ki The computation energy efficiency coefficient
ti The fraction of time allocated to the ith WD for

task offloading
B The communication bandwidth
N0 The receiver noise power
h The vector representation of wireless channel

gains fhiji 2 Ng
x The vector representation of offloading indicators

fxiji 2 Ng
tt The vector representation of ftiji 2 Ng
Qð�Þ The weighted sum computation rate function
p Offloading policy function
u The parameters of the DNN
x̂t Relaxed computation offloading action
K The number of quantized binary offloading actions
gK The quantization function
Lð�Þ The training loss function of the DNN
d The training interval of the DNN
D The updating interval forK
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f0; 1gN of (P1) once the channel realization h 2 RN
> 0 is

revealed at the beginning of each time frame. The policy
is denoted as

p : h 7! x�: (5)

The proposed DROO algorithm gradually learns such pol-
icy function p from the experience.

4.1 Algorithm Overview

The structure of the DROO algorithm is illustrated in Fig. 3.
It is composed of two alternating stages: offloading action
generation and offloading policy update. The generation of
the offloading action relies on the use of a DNN, which is
characterized by its embedded parameters u, e.g., the
weights that connect the hidden neurons. In the tth time
frame, the DNN takes the channel gain ht as the input, and
outputs a relaxed offloading action x̂t (each entry is relaxed
to continuous between 0 and 1) based on its current offload-
ing policy put , parameterized by ut. The relaxed action is
then quantized into K binary offloading actions, among
which one best action x�t is selected based on the achievable
computation rate as in (P2). The corresponding x�t ; a

�
t ; tt

�
t

� �
is output as the solution for ht, which guarantees that all the
physical constrains listed in (4b), (4c), (4d) are satisfied. The
network takes the offloading action x�t , receives a reward
Q�ðht; x

�
t Þ, and adds the newly obtained state-action pair

ht; x
�
t

� 	
to the replay memory.

Subsequently, in the policy update stage of the tth time
frame, a batch of training samples are drawn from the mem-
ory to train the DNN, which accordingly updates its param-
eter from ut to utþ1 (and equivalently the offloading policy
putþ1

). The new offloading policy putþ1
is used in the next

time frame to generate offloading decision x�tþ1 according to
the new channel htþ1 observed. Such iterations repeat there-
after as new channel realizations are observed, and the pol-
icy put of the DNN is gradually improved. The descriptions
of the two stages are detailed in the following subsections.

4.2 Offloading Action Generation

Suppose that we observe the channel gain realization ht in
the tth time frame, where t ¼ 1; 2; � � �. The parameters of the

DNN ut are randomly initialized following a zero-mean nor-
mal distribution when t ¼ 1. The DNN first outputs a
relaxed computation offloading action x̂t, represented by a
parameterized function x̂t ¼ futðhtÞ, where

x̂t ¼ fx̂t;ijx̂t;i 2 ½0; 1�; i ¼ 1; � � � ; Ng (6)

and x̂t;i denotes the ith entry of x̂t.
The well-known universal approximation theorem

claims that one hidden layer with enough hidden neurons
suffices to approximate any continuous mapping f if a
proper activation function is applied at the neurons, e.g.,
sigmoid, ReLu, and tanh functions [29]. Here, we use ReLU
as the activation function in the hidden layers, where the
output y and input v of a neuron are related by
y ¼ maxfv; 0g. In the output layer, we use a sigmoid activa-
tion function, i.e., y ¼ 1= 1þ e�vð Þ, such that the relaxed off-
loading action satisfies x̂t;i 2 ð0; 1Þ.

Then, we quantize x̂t to obtain K binary offloading
actions, where K is a design parameter. The quantization
function, gK , is defined as

gK : x̂t 7! fxk j xk 2 f0; 1gN; k ¼ 1; � � � ; Kg: (7)

In general, K can be any integer within ½1; 2N � (N is the
number of WDs), where a larger K results in better solution
quality and higher computational complexity, and vice
versa. To balance the performance and complexity, we pro-
pose an order-preserving quantization method, where the
value of K could be set from 1 to ðN þ 1Þ. The basic idea is
to preserve the ordering during quantization. That is, for
each quantized action xk, xk;i � xk;j should hold if x̂t;i � x̂t;j

for all i; j 2 1; � � � ; Nf g. Specifically, for a given
1 � K � N þ 1, the set ofK quantized actions fxkg is gener-
ated from the relaxed action x̂t as follows:

1) The first binary offloading decision x1 is obtained as

x1;i ¼
1 x̂t;i > 0:5;
0 x̂t;i � 0:5;



(8)

for i ¼ 1; � � � ; N .
2) To generate the remaining K � 1 actions, we first

order the entries of x̂t with respective to their

Fig. 3. The schematics of the proposed DROO algorithm.
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distances to 0.5, denoted by jx̂t;ð1Þ � 0:5j � jx̂t;ð2Þ�
0:5j � . . . � jx̂t;ðiÞ � 0:5j. . . � jx̂t;ðNÞ � 0:5j, where x̂t;ðiÞ
is the ith order statistic of x̂t. Then, the kth offloading
decision xk, where k ¼ 2; � � � ; K, is calculated based
on x̂t;ðk�1Þ as

xk;i ¼

1 x̂t;i > x̂t;ðk�1Þ;
1 x̂t;i ¼ x̂t;ðk�1Þ and x̂t;ðk�1Þ � 0:5;
0 x̂t;i ¼ x̂t;ðk�1Þ and x̂t;ðk�1Þ > 0:5;
0 x̂t;i < x̂t;ðk�1Þ;

8>><
>>:

(9)

for i ¼ 1; � � � ; N .
Because there are in total N order statistic of x̂t, while

each can be used to generate one quantized action from (9),
the above order-preserving quantization method in (8) and
(9) generates at most ðN þ 1Þ quantized actions, i.e.,
K � N þ 1. In general, setting a large K (e.g., K ¼ N) leads
to better computation rate performance at the cost of higher
complexity. However, as we will show later in Section 4.4, it
is not only inefficient but also unnecessary to generate a
large number of quantized actions in each time frame.
Instead, setting a small K (even close to 1) suffices to
achieve good computation rate performance and low com-
plexity after sufficiently long training period.

We use an example to illustrate the above order-preserv-
ing quantization method. Suppose that x̂t = [0.2, 0.4, 0.7, 0.9]
and K ¼ 4. The corresponding order statistics of x̂t are
x̂t;ð1Þ ¼ 0:4, x̂t;ð2Þ ¼ 0:7, x̂t;ð3Þ ¼ 0:2, and x̂t;ð4Þ ¼ 0:9. Therefore,
the 4 offloading actions generated from the above quantiza-
tion method are x1 = [0, 0, 1, 1], x2 = [0, 1, 1, 1], x3 = [0, 0, 0,
1], and x4 = [1, 1, 1, 1]. In comparison, when the conven-
tional KNN method is used, the obtained actions are x1 = [0,
0, 1, 1], x2= [0, 1, 1, 1], x3 = [0, 0, 0, 1], and x4 = [0, 1, 0, 1].

Compared to the KNNmethodwhere the quantized solu-
tions are closely placed around x̂, the offloading actions pro-
duced by the order-preserving quantization method are
separated by a larger distance. Intuitively, this creates higher
diversity in the candidate action set, thus increasing the
chance of finding a local maximum around x̂t. In Section 5.1,
we show that the proposed order-preserving quantizat-
ion method achieves better convergence performance than
KNNmethod.

Recall that each candidate action xk can achieveQ�ðht; xkÞ
computation rate by solving (P2). Therefore, the best off-
loading action x�t at the tth time frame is chosen as

x�t ¼ arg max
xi2 xkf g

Q�ðht; xiÞ: (10)

Note that the K-times evaluation of Q�ðht; xkÞ can be proc-
essed in parallel to speed up the computation of (10). Then,
the network outputs the offloading action x�t along with its
corresponding optimal resource allocation ðt�t ; a�t Þ.

4.3 Offloading Policy Update

The offloading solution obtained in (10) will be used to
update the offloading policy of the DNN. Specifically, we
maintain an initially empty memory of limited capacity. At
the tth time frame, a new training data sample ðht; x

�
t Þ is

added to the memory. When the memory is full, the newly
generated data sample replaces the oldest one.

We use the experience replay technique [15], [30] to train
the DNN using the stored data samples. In the tth time

frame, we randomly select a batch of training data samples
fðht; x

�
tÞ j t 2 T tg from the memory, characterized by a set

of time indices T t. The parameters ut of the DNN are
updated by applying the Adam algorithm [31] to reduce the
averaged cross-entropy loss, as

LðutÞ ¼

� 1

jT tj
X

t2T t

�
ðx�tÞ

œlog futðhtÞ þ ð1� x�tÞ
œlog

�
1� futðhtÞ

	�
;

where jT tj denotes the size of T t, the superscript œ denotes
the transpose operator, and the log function denotes the ele-
ment-wise logarithm operation of a vector. The detailed
update procedure of the Adam algorithm is omitted here
for brevity. In practice, we train the DNN every d time
frames after collecting sufficient number of new data sam-
ples. The experience replay technique used in our frame-
work has several advantages. First, the batch update has a
reduced complexity than using the entire set of data sam-
ples. Second, the reuse of historical data reduces the vari-
ance of ut during the iterative update. Third, the random
sampling fastens the convergence by reducing the correla-
tion in the training samples.

Overall, the DNN iteratively learns from the best state-
action pairs ht; x

�
t

� 	
’s and generates better offloading deci-

sions output as the time progresses. Meanwhile, with the
finite memory space constraint, the DNN only learns from
the most recent data samples generated by the most recent
(and more refined) offloading policies. This closed-loop
reinforcement learning mechanism constantly improves its
offloading policy until convergence. We provide the
pseudo-code of the DROO algorithm in Algorithm 1.

Algorithm 1. An Online DROO Algorithm to Solve the
Offloading Decision Problem

input: Wireless channel gain ht at each time frame t, the
number of quantized actionsK

output: Offloading action x�t , and the corresponding optimal
resource allocation for each time frame t;

1 Initialize the DNN with random parameters u1 and empty
memory;

2 Set iteration numberM and the training interval d;
3 for t ¼ 1; 2; . . .;M do
4 Generate a relaxed offloading action x̂t ¼ fut ðhtÞ;
5 Quantize x̂t intoK binary actions fxkg ¼ gKðx̂tÞ;
6 Compute Q�ðht; xkÞ for all fxkg by solving (P2);
7 Select the best action x�t ¼ argmax

fxkg
Q�ðht; xkÞ;

8 Update the memory by adding ðht; x
�
t Þ;

9 if t mod d ¼ 0 then
10 Uniformly sample a batch of data set fðht; x

�
tÞ j t 2 T tg

from the memory;
11 Train the DNNwith fðht; x

�
tÞ j t 2 T tg and update ut

using the Adam algorithm;
12 end
13 end

4.4 Adaptive Setting ofK

Compared to the conventional optimization algorithms, the
DROO algorithm has the advantage in removing the need
of solving hard MIP problems, and thus has the potential to
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significantly reduce the complexity. The major computa-
tional complexity of the DROO algorithm comes from solv-
ing (P2) K times in each time frame to select the best
offloading action. Evidently, a largerK (e.g.,K ¼ N) in gen-
eral leads to a better offloading decision in each time frame
and accordingly a better offloading policy in the long term.
Therefore, there exists a fundamental performance-com-
plexity tradeoff in setting the value ofK.

In this subsection, we propose an adaptive procedure
to automatically adjust the number of quantized actions
generated by the order-preserving quantization method.
We argue that using a large and fixed K is not only com-
putationally inefficient but also unnecessary in terms of
computation rate performance. To see this, consider a
wireless powered MEC network with N ¼ 10 WDs. We
apply the DROO algorithm with a fixed K ¼ 10 and plot
in Fig. 4 the index of the best action x�t calculated from
(10) over time, denoted as k�t . For instance, k�t ¼ 2 indi-
cates that the best action in the tth time frame is ranked
the second among the K ordered quantized actions. In
the figure, the curve is plotted as the 50-time-frames roll-
ing average of k�t and the light shadow region is the
upper and lower bounds of k�t in the past 50 time frames.
Apparently, most of the selected indices k�t are no larger
than 5 when t � 5000. This indicates that those generated
offloading actions xk with k > 5 are redundant. In other
words, we can gradually reduce K during the learning
process to speed up the algorithm without compromising
the performance.

Inspired by the results in Fig. 4, we propose an adaptive
method for settingK. We denoteKt as the number of binary
offloading actions generated by the quantization function at
the tth time frame. We set K1 ¼ N initially and update Kt

every D time frames, where D is referred to as the updating
interval for K. Upon an update time frame, Kt is set as 1
plus the largest k�t observed in the past D time frames. The
reason for the additional 1 is to allow Kt to increase during
the iterations. Mathematically,Kt is calculated as

Kt ¼
N; t ¼ 1;
min max k�t�1; � � � ; k�t�D

� 	
þ 1; N

� 	
; tmodD ¼ 0;

Kt�1; otherwise;

8<
:

for t � 1. For an extreme case with D ¼ 1,Kt updates in each
time frame. Meanwhile, when D ! 1, Kt never updates
such that it is equivalent to setting a constant K ¼ N . In
Section 5.2, we numerically show that setting a proper D
can effectively speed up the learning process without
compromising the computation rate performance.

5 NUMERICAL RESULTS

In this section, we use simulations to evaluate the perfor-
mance of the proposed DROO algorithm. In all simulations,
we use the parameters of Powercast TX91501-3W with
P ¼ 3 Watts for the energy transmitter at the AP, and those
of P2110 Powerharvester for the energy receiver at each
WD.2 The energy harvesting efficiency m ¼ 0:51. The dis-
tance from the ith WD to the AP, denoted by di, is uniformly
distributed in the range of (2.5, 5.2) meters, i ¼ 1; � � � ; N .
Due to the page limit, the exact values of di’s are omitted.
The average channel gain �hi follows the free-space path loss

model �hi ¼ Adð 3�108
4pfcdi

Þde , where Ad ¼ 4:11 denotes the

antenna gain, fc ¼ 915 MHz denotes the carrier frequency,
and de ¼ 2:8 denotes the path loss exponent. The time-vary-
ing wireless channel gain of the N WDs at time frame t,
denoted by ht ¼ ½ht

1; h
t
2; � � � ; ht

N �, is generated from a

Rayleigh fading channel model as ht
i ¼ �hia

t
i. Here at

i is the
independent random channel fading factor following an
exponential distribution with unit mean. Without loss of
generality, the channel gains are assumed to remain the
same within one time frame and vary independently from
one time frame to another. We assume equal computing
efficiency ki ¼ 10�26, i ¼ 1; � � � ; N , and f ¼ 100 for all the
WDs [32]. The data offloading bandwidth B ¼ 2 MHz,
receiver noise power N0 ¼ 10�10, and vu ¼ 1:1. Without loss
of generality, we set T ¼ 1 and the wi ¼ 1 if i is an odd num-
ber and wi ¼ 1:5 otherwise. All the simulations are per-
formed on a desktop with an Intel Core i5-4570 3.2 GHz
CPU and 12 GB memory.

We simply consider a fully connected DNN consisting of
one input layer, two hidden layers, and one output layer in
the proposed DROO algorithm, where the first and second
hidden layers have 120 and 80 hidden neurons, respectively.
Note that the DNN can be replaced by other structures with
different number of hidden layers and neurons, or even
other types of neural networks to fit the specific learning
problem, such as convolutional neural network (CNN) or
recurrent neural network (RNN) [33]. In this paper, we find
that a simple two-layer perceptron suffices to achieve satis-
factory convergence performance, while better convergence
performance is expected by further optimizing the DNN
parameters. We implement the DROO algorithm in Python
with TensorFlow 1.0 and set training interval d ¼ 10, training
batch size jT j ¼ 128, memory size as 1024, and learning rate
for Adam optimizer as 0.01. The source code is available at
https://github.com/revenol/DROO.

5.1 Convergence Performance

We first consider a wireless powered MEC network with
N ¼ 10 WDs. Here, we define the normalized computation
rate Q̂ðh; xÞ 2 ½0; 1�, as

Fig. 4. The index k�t of the best offloading actions x�t for DROO algorithm
when the number of WDs is N ¼ 10 and K ¼ N. The detailed simulation
setups are presented in Section 5.

2. See detailed product specifications at http://www.powercastco.com.
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Q̂ðh; xÞ ¼ Q�ðh; xÞ
max

x02f0;1gNQ
�ðh; x0Þ ; (11)

where the optimal solution in the denominator is obtained
by enumerating all the 2N offloading actions.

In Fig. 5, we plot the training loss LðutÞ of the DNN and
the normalized computation rate Q̂. Here, we set a fixed
K ¼ N . In the figure below, the blue curve denotes the mov-
ing average of Q̂ over the last 50 time frames, and the light
blue shadow denotes the maximum and minimum of Q̂ in
the last 50 frames. We see that the moving average Q̂ of
DROO gradually converges to the optimal solution when t
is large. Specifically, the achieved average Q̂ exceeds 0.98 at
an early stage when t > 400 and the variance gradually
decreases to zero as t becomes larger, e.g., when t > 3; 000.
Meanwhile, in the figure above, the training loss LðutÞ grad-
ually decreases and stabilizes at around 0.04, whose fluctua-
tion is mainly due to the random sampling of training data.

In Fig. 6, we evaluate DROO for MEC networks with
alternating-weight WDs. We evaluate the worst case by
alternating the weights of all WDs between 1 and 1.5 at the
same time, specifically, at t ¼ 6; 000 and t ¼ 8; 000. The
training loss sharply increases after the weights alternated

and gradually decreases and stabilizes after training for
1,000 time frames, which means that DROO automatically
updates its offloading decision policy and converges to the
new optimal solution. Meanwhile, as shown in Fig. 6, the
minimum of Q̂ is greater than 0.95 and the moving average
of Q̂ is always greater than 0.99 for t > 6; 000.

In Fig. 7, we evaluate the ability of DROO in supporting
WDs’ temporarily critical computation demand. Suppose
thatWD1 andWD2 have a temporary surge of commutation
demands. We double WD2’s weight from 1.5 to 3 at time
frame t ¼ 4; 000, triple WD1’s weight from 1 to 3 at
t ¼ 6; 000, and reset both of their weights to the original val-
ues at t ¼ 8; 000. In the top sub-figure in Fig. 7, we plot the
relative computation rates for both WDs, where each WD’s
computation rate is normalized against that achieved under
the optimal offloading actions with their original weights.
In the first 3,000 time frames, DROO gradually converges
and the corresponding relative computation rates for both
WDs are lower than the baseline at most of the time frames.
During time frames 4; 000 < t < 8; 000, WD2’s weight is
doubled. Its computation rate significantly improves over
the baseline, where at some time frames the improvement
can be as high as 2 to 3 times of the baseline. Similar rate
improvement is also observed for WD1 when its weight is
tripled between 6; 000 < t < 8; 000. In addition, their com-
putation rates gradually converge to the baseline when their
weights are reset to the original value after t ¼ 8; 000. On
average,WD1 andWD2 have experienced 26 and 12 percent
higher computation rate, respectively, during their periods
with increased weights. In the bottom sub-figure in Fig. 7,
we plot the normalized computation rate performance of
DROO, which shows that the algorithm can quickly adapt
itself to the temporary demand variation of users. The
results in Fig. 7 have verified the ability of the propose
DROO framework in supporting temporarily critical service
quality requirements.

In Fig. 8, we evaluate DROO for MEC networks where
WDs can be occasionally turned off/on. After DROO con-
verges, we randomly turn off on one WD at each time frame
t ¼ 6; 000; 6; 500; 7; 000; 7; 500, and then turn them on at time
frames t ¼ 8; 000; 8; 500; 9; 000. At time frame t ¼ 9; 500, we
randomly turn off two WDs, resulting an MEC network

Fig. 5. Normalized computation rates and training losses for DROO
algorithm under fading channels whenN ¼ 10 andK ¼ 10.

Fig. 6. Normalized computation rates and training losses for DROO
algorithm with alternating-weight WDs whenN ¼ 10 andK ¼ 10.

Fig. 7. Computation rates for DROO algorithm with temporarily new
weights whenN ¼ 10 andK ¼ 10.
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with 8 active WDs. Since the number of neurons in the input
layer of DNN is fixed as N ¼ 10, we set the input channel
gains h for the inactive WDs as 0 to exclude them from the
resource allocation optimization with respect to (P2). We
numerically study the performance of this modified DROO
in Fig. 8. Note that, when evaluating the normalized compu-
tation rate Q̂ via equation (11), the denominator is re-com-
puted when one WD is turned off/on. For example, when
there are 8 active WDs in the MEC network, the denomina-
tor is obtained by enumerating all the 28 offloading actions.
As shown in Fig. 8, the training loss LðutÞ increases little
after WDs are turned off/on, and the moving average of the
resulting Q̂ is always greater than 0.99.

In Fig. 9, we further study the effect of different algo-
rithm parameters on the convergence performance of

DROO, including different memory sizes, batch sizes, train-
ing intervals, and learning rates. In Fig. 9a, a small memory
(=128) causes larger fluctuations on the convergence perfor-
mance, while a large memory (=2048) requires more train-
ing data to converge to optimal, as Q̂ ¼ 1. In the following
simulations, we choose the memory size as 1024. For each
training procedure, we randomly sample a batch of data
samples from the memory to improve the DNN. Hence, the
batch size must be no more than the memory size 1024. As
shown in Fig. 9b, a small batch size (=32) does not take
advantage of all training data stored in the memory, while a
large batch size (=1024) frequently uses the “old” training
data and degrades the convergence performance. Further-
more, a large batch size consumes more time for training.
As a trade-off between convergence speed and computation
time, we set the training batch size jT j ¼ 128 in the follow-
ing simulations. In Fig. 9c, we investigate the convergence
of DROO under different training intervals d. DROO con-
verges faster with shorter training interval, and thus more
frequent policy update. However, numerical results show
that it is unnecessary to train and update the DNN too fre-
quently. Hence, we set the training interval d ¼ 10 to speed
up the convergence of DROO. In Fig. 9d, we study the
impact of the learning rate in Adam optimizer [31] to the
convergence performance. We notice that either a too small
or a too large learning rate causes the algorithm to converge
to a local optimum. In the following simulations, we set the
learning rate as 0.01.

In Fig. 10, we compare the performance of two quantiza-
tion methods: the proposed order-preserving quantization
and the conventional KNN quantization method under dif-
ferent K. In particular, we plot the the moving average of Q̂
over a window of 200 time frames. When K ¼ N , both
methods converge to the optimal offloading actions, i.e., the

Fig. 8. Normalized computation rates and training losses for DROO
algorithm with ON-OFFWDs whenN ¼ 10 andK ¼ 10.

Fig. 9. Moving average of Q̂ under different algorithm parameters when N ¼ 10: (a) memory size, (b) training batch size, (c) training interval, and
(d) learning rate.

HUANG ET AL.: DEEP REINFORCEMENT LEARNING FOR ONLINE COMPUTATION OFFLOADING IN WIRELESS POWERED MOBILE-EDGE... 2589

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on October 13,2020 at 02:02:10 UTC from IEEE Xplore.  Restrictions apply. 



moving average of Q̂ approaches 1. However, they both
achieve suboptimal offloading actions when K is small. For
instance, when K ¼ 2, the order-preserving quantization
method and KNN both only converge to around 0.95. None-
theless, we can observe that whenK � 2, the order-preserv-
ing quantization method converges faster than the KNN
method. Intuitively, this is because the order-preserving
quantization method offers a larger diversity in the candi-
date actions than the KNN method. Therefore, the training
of DNN requires exploring fewer offloading actions before
convergence. Notice that the DROO algorithm does not con-
verge for both quantization methods when K ¼ 1. This is
because the DNN cannot improve its offloading policy
when action selection is absent.

The simulation results in this subsection show that the
proposed DROO framework can quickly converge to the
optimal offloading policy, especially when the proposed
order-preserving action quantization method is used.

5.2 Impact of Updating Intervals D

In Fig. 11, we further study the impact of the updating inter-
val of K (i.e., D) on the convergence property. Here, we use
the adaptive setting method of K in Section 4.4 and plot the
moving average of Q̂ over a window of 200 time frames. We
see that the DROO algorithm converges to the optimal solu-
tion only when setting a sufficiently large D, e.g., D � 16.
Meanwhile, we also plot in Fig. 12 the moving average ofKt

under different D. We see that Kt increases with D when t is
large. This indicates that setting a larger D will lead to

higher computational complexity, i.e., requires computing
(P2) more times in a time frame. Therefore, a performance-
complexity tradeoff exists in setting D.

To properly choose an updating interval D, we plot in
Fig. 13 the tradeoff between the total CPU execution latency

of 10000 channel realizations and the moving average of Q̂
in the last time frame. On one hand, we see that the average
of Q̂ quickly increases from 0.96 to close to 1 when D � 16,
while the improvement becomes marginal afterwards when
we further increase D. On the other hand, the CPU execu-
tion latency increases monotonically with D. To balance
between performance and complexity, we set D ¼ 32 for
DROO algorithm in the following simulations.

5.3 Computation Rate Performance

Regarding to the weighted sum computation rate perfor-
mance, we compare our DROO algorithm with three repre-
sentative benchmarks:

� Coordinate Descent algorithm [7]. The CD algorithm
iteratively swaps in each round the computing mode
of the WD that leads to the largest computation rate
improvement. That is, from xi ¼ 0 to xi ¼ 1, or vice
versa. The iteration stops when the computation per-
formance cannot be further improved by the comput-
ing mode swapping. The CD method is shown to
achieve near-optimal performance under differentN .

Fig. 10. Moving average of Q̂ under different quantization functions and
K whenN ¼ 10.

Fig. 11. Moving average of Q̂ for DROO algorithm with different updating
interval D for setting an adaptiveK. Here, we setN ¼ 10.

Fig. 12. Dynamics of Kt under different updating interval D when
N ¼ 10.

Fig. 13. Tradeoff between Q̂ and CPU execution latency after training
DROO for 10,000 channel realizations under different updating intervals
D whenN ¼ 10.
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� Linear Relaxation algorithm [13]. The binary offloading
decision variable xi conditioned on (4d) is relaxed to
a real number between 0 and 1, as x̂i 2 ½0; 1�. Then
the optimization problem (P1) with this relaxed con-
straint is convex with respect to fx̂ig and can be
solved using the CVXPY convex optimization tool-
box.3 Once x̂i is obtained, the binary offloading deci-
sion xi is determined as follows

xi ¼
1; when r�O;iða; tiÞ � r�L;iðaÞ;
0; otherwise:



(12)

� Local Computing. All N WDs only perform local com-
putation, i.e., setting xi ¼ 0; i ¼ 1; � � � ; N in (P2).

� Edge Computing. All N WDs offload their tasks to the
AP, i.e., setting xi ¼ 1; i ¼ 1; � � � ; N in (P2).

In Fig. 14, we first compare the computation rate perfor-
mance achieved by different offloading algorithms under
varying number of WDs, N . Before the evaluation, DROO
has been trained with 24,000 independent wireless channel
realizations, and its offloading policy has converged. This is
reasonable since we are more interested in the long-term
operation performance [34] for field deployment. Each point
in the figure is the average performance of 6,000 indepen-
dent wireless channel realizations. We see that DROO
achieves similar near-optimal performance with the CD
method, and significantly outperforms the Edge Computing
and Local Computing algorithms. In Fig. 15, we further
compare the performance of DROO and LR algorithms. For
better exposition, we plot the normalized computation rate
Q̂ achievable by DROO and LR. Specifically, we enumerate
all 2N possible offloading actions as in (11) when N ¼ 10.
For N ¼ 20 and 30, it is computationally prohibitive to enu-
merate all the possible actions. In this case, Q̂ is obtained by
normalizing the computation rate achievable by DROO (or
LR) against that of CD method. We then plot both the
median and the confidence intervals of Q̂ over 6000 inde-
pendent channel realizations. We see that the median of
DROO is always close-to-1 for different number of users,
and the confidence intervals are mostly above 0.99. Some

normalized computation rate Q̂ of DROO is greater than 1,
since DROO generates greater computation rate than CD at
some time frame. In comparison, the median of the LR algo-
rithm is always less than 1. The results in Figs. 14 and 15
show that the proposed DROO method can achieve near-
optimal computation rate performance under different net-
work placements.

5.4 Execution Latency

At last, we evaluate the execution latency of the DROO algo-
rithm. The computational complexity of DROO algorithm
greatly depends on the complexity in solving the resource
allocation sub-problem (P2). For fair comparison, we use
the same bi-section search method as the CD algorithm in
[7]. The CD method is reported to achieve an OðN3Þ com-
plexity. For the DROO algorithm, we consider both using a
fixed K ¼ N and an adaptive K as in Section 4.4. Note that
the execution latency for DROO listed in Table 2 is averaged
over 30,000 independent wireless channel realizations
including both offloading action generation and DNN train-
ing. Overall, the training of DNN contributes only a small
proportion of CPU execution latency, which is much
smaller than that of the bi-section search algorithm for
resource allocation. Taking DROO with K ¼ 10 as an exam-
ple, it uses 0.034 second to generate an offloading action
and uses 0.002 second to train the DNN in each time frame.
Here training DNN is efficient. During each offloading pol-
icy update, only a small batch of training data samples,
jT j ¼ 128, are used to train a two-hidden-layer DNN with
only 200 hidden neurons in total via back-propagation. We
see from Table 2 that an adaptive K can effectively reduce
the CPU execution latency than a fixed K ¼ N . Besides,

Fig. 14. Comparisons of computation rate performance for different
offloading algorithms.

Fig. 15. Boxplot of the normalized computation rate Q̂ for DROO and
LR algorithms under different number of WDs. The central mark (in red)
indicates the median, and the bottom and top edges of the box indicate
the 25th and 75th percentiles, respectively.

TABLE 2
Comparisons of CPU Execution Latency

# of WDs DROO
(FixedK ¼ N)

DROO
(Adaptive K with D = 32)

CD LR

10 3.6e-2s 1.2e-2s 2.0e-1s 2.4e-1s
20 1.3e-1s 3.0e-2s 1.3s 5.3e-1s
30 3.1e-1s 5.9e-2s 3.8s 8.1e-1s

3. CVXPY package is available online at https://www.cvxpy.org/
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DROO with an adaptive K requires much shorter CPU exe-
cution latency than the CD algorithm and the LR algorithm.
In particular, it generates an offloading action in less than
0.1 second when N ¼ 30, while CD and LR take 65 times
and 14 times longer CPU execution latency, respectively.
Overall, DROO achieves similar rate performance as the
near-optimal CD algorithm but requires substantially less
CPU execution latency than the heuristic LR algorithm.

The wireless-powered MEC network considered in this
paper may correspond to a static IoT network with both the
transmitter and receivers are fixed in locations. Measure-
ment experiments [24], [25], [26] show that the channel
coherence time, during which we deem the channel invari-
ant, ranges from 1 to 10 seconds, and is typically no less
than 2 seconds. The time frame duration is set smaller than
the coherence time. Without loss of generality, let us assume
that the time frame is 2 seconds. Taking the MEC network
with N ¼ 30 as an example, the total execution latency of
DROO is 0.059 second, accounting for 3 percent of the time
frame, which is an acceptable overhead for field deploy-
ment. In fact, DROO can be further improved by only gener-
ating offloading actions at the beginning of the time frame
and then training DNN during the remaining time frame in
parallel with energy transfer, task offloading and computa-
tion. In comparison, the execution of LR algorithm con-
sumes 40 percent of the time frame, and the CD algorithm
even requires longer execution time than the time frame,
which are evidently unacceptable in practical implementa-
tion. Therefore, DROO makes real-time offloading and
resource allocation truly viable for wireless powered MEC
networks in fading environment.

6 CONCLUSION

In this paper, we have proposed a deep reinforcement learn-
ing-based online offloading algorithm, DROO, to maximize
the weighted sum computation rate in wireless powered
MEC networks with binary computation offloading. The
algorithm learns from the past offloading experiences to
improve its offloading action generated by a DNN via rein-
forcement learning. An order-preserving quantization and
an adaptive parameter setting method are devised to
achieve fast algorithm convergence. Compared to the con-
ventional optimization methods, the proposed DROO algo-
rithm completely removes the need of solving hard mixed
integer programming problems. Simulation results show
that DROO achieves similar near-optimal performance as
existing benchmark methods but reduces the CPU execu-
tion latency by more than an order of magnitude, making
real-time system optimization truly viable for wireless pow-
ered MEC networks in fading environment.

Despite that the resource allocation subproblem is solved
under a specific wireless powered network setup, the pro-
posed DROO framework is applicable for computation off-
loading in general MEC networks. A major challenge,
however, is that the mobility of the WDs would cause
DROO harder to converge.

As a concluding remark, we expect that the proposed
framework can also be extended to solve MIP problems for
various applications in wireless communications and net-
works that involve in coupled integer decision and continu-
ous resource allocation problems, e.g., mode selection in

D2D communications, user-to-base-station association in
cellular systems, routing in wireless sensor networks, and
caching placement in wireless networks. The proposed
DROO framework is applicable as long as the resource allo-
cation subproblems can be efficiently solved to evaluate the
quality of the given integer decision variables.
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