849

3@9 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 2, FEBRUARY 2021

Reinforcement Learning for Real-Time Pricing
and Scheduling Control in EV Charging Stations

Shuoyao Wang ““, Suzhi Bi

Abstract—This article proposes a reinforcement-learning
(RL) approach for optimizing charging scheduling and pric-
ing strategies that maximize the system objective of a
public electric vehicle (EV) charging station. The proposed
algorithm is “online” in the sense that the charging and
pricing decisions made at each time depend only on the
observation of past events, and is “model-free” in the
sense that the algorithm does not rely on any assumed
stochastic models of uncertain events. To cope with the
challenge arising from the time-varying continuous state
and action spaces in the RL problem, we first show that
it suffices to optimize the total charging rates to ful-
fill the charging requests before departure times. Then,
we propose a feature-based linear function approximator
for the state—value function to further enhance the effi-
ciency and generalization ability of the proposed algorithm.
Through numerical simulations with real-world data, we
show that the proposed RL algorithm achieves on average
138.5% higher charging-station profit than representative
benchmark algorithms.

Index Terms—Dynamic programming, machine learn-

ing, pricing and scheduling, reinforcement learning,

state—action-reward-state—action (SARSA).
NOMENCLATURE

Set

A Action space.

T Set of electric vehicles (EVs) that arrive at the

charging station during the time ¢.
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Set of all parking EVs at time ¢.

Set of EVs yet to be charged in time slot ¢
after the arrival of Z;.

State space.

Learning rate of the proposed algorithm at ¢th
time slot.
Weights of the feature values.
Discount factor of Markov decision process
(MDP) formulation.

Parameters that define the feature functions.
Residual demand of EV i at time ¢t (kWh).
Residual parking time of EV 7 at time ¢.
Charging station action at time ¢.
Real-time electricity price at time ¢ ($kWh).
Demand of EV ¢ (kWh).

Demand of EV 1 in response to the charging
price r at the arrival time slot (kWh).
Maximum total charging rate of the charging
station (kWh).

State transition function.

Latest residual parking time among the EVs
int.

Parking time of EV 1.

Q-value given state—action pair (S, A).
System state at time ¢.

Arrival time of EV 4.

Reward function given state—action pair
(Se. A¢) (9.

Maximum charging rate of individual EVs
(kWh).

Total charging rate of the charging station at
time ¢ (kWh).

Unique public charging price at time ¢
($kWh).

Charging rates of EV ¢ at time ¢ (kWh).

[. INTRODUCTION

EING one of the fastest growing sources of energy demand
B and greenhouse gas emission, the transportation sector
is under great pressure to be decarbonized through deploying
electric vehicles (EVs). High penetration of EVs is expected
to change the power load profile significantly in distribution
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networks, creating potential threats to the power grid [1]. Estab-
lishing a conveniently available public charging infrastructure is
essential to accommodating more clean energy, reducing carbon
emissions, and alleviating peak charging loads. In the past
decade, various EV charging control and scheduling schemes
have been proposed to improve grid reliability [2], reduce
charging operation cost [3], [4], offer auxiliary services [5], and
promote the integration of renewable generation in commercial
Microgrids [6], etc. The authors in [7] and [8] presented com-
prehensive surveys on the efficient online charging scheduling
algorithms for the power grid performance enhancement.

Other than charging scheduling control, there have been in-
creasing research efforts on designing proper demand response
(DR) mechanisms to improve the overall system efficiency
[9]-[11]. Therein, EVs adjust their charging demands according
to the charging price announced by the charging stations or
utilities. For instance, the authors in [10] and [11] considered
dynamic pricing DR mechanisms for EV charging stations and
distributed EVs, respectively. Overall, it has been widely ac-
cepted that an effective pricing and scheduling policy benefits
both EV users and the grid system.

Most existing studies assume that besides the observation of
past events, certain knowledge of the future EV arrivals and
electricity prices are also known to the charging station [9],
[12]-[14]. Such noncausal knowledge is broadly classified into
two categories, namely the knowledge of the exact realization
of future events and the knowledge of stochastic distributions of
future events. For example, Sarker et al. [12] optimized the DR of
EV aggregators with the assumption that the aggregator knows
the future electricity prices perfectly in a noncausal manner.
The authors in [13] and [14] proposed Markov decision process
(MDP) based algorithms assuming that the stochastic distribu-
tions of future events are known. In practice, however, neither
exact realizations nor distributional information of future events
is easy to estimate precisely in a cost-effective manner. More-
over, the distribution of future events is likely to be time-varying
in practice, making the estimation much harder. Alternatively,
learning-based approaches that are driven by real-world data
observations are good candidates to deal with this issue. For
example, Chis et al. [15] adopted an reinforcement-learning
(RL) algorithm to schedule the home charging of an individual
EV, such that the long-term electricity costs of EV owners
are reduced. Likewise, an RL approach was adopted in [16]
to learn the day-ahead hourly planning of EV fleet charging.
However, most of the previous learning based algorithms focus
on day-ahead planning schedule and, thus, ignore the random
arrival and departure of EVs in real time. This is because random
EV arrival and departure causes the state and action spaces of
the RL problem to vary with time, rendering standard solution
algorithms inapplicable.

To complement the previous work, we propose an RL al-
gorithm to obtain the optimal pricing and charging scheduling
strategy when random EV arrivals and departures are consid-
ered. To tackle the difficulty of time-varying state and action
spaces due to random EV arrivals and departures, we propose to
represent the state—action function using a linear combination
of a set of carefully designed feature functions. The algorithm is

practical in the sense that it is model-free and online. Here, by
model-free, we mean that the decision does not depend on any
assumed stochastic model of uncertain future events. By online,
we mean that the algorithm is based on only the past events,
including the arrival and departure process of EVs, that have
already arrived and the electricity prices that have already been
observed. Our main contributions are detailed as follows.

1) Tothe best of the authors’ knowledge, this article is among
the first to develop a model-free data-driven method for
joint pricing and charging scheduling at an EV charging
station with random EV arrivals and departures.

2) Through rigorous analysis, we show that it suffices to
optimize the total charging rates of EVs instead of
the individual charging rate to fulfill the charging de-
mands before their departure times. Based on this, we
greatly reduce the dimension of the action space without
compromising the performance of the proposed algo-
rithm.

3) To deal with the time-varying state and action spaces
caused by random EV arrivals and departures, we ap-
proximate the state—action function with four carefully
designed feature functions based on the features of the
underlying physical system. The feature functions not
only greatly reduce the dimension of the state space but
also convert the decision in a time-varying action space
to that of four time-invariant constants.

4) We evaluate the performance of the proposed method,
referred to as the hyperopia state—action—-reward—state—
action (SARSA) based algorithm (HSA), through exten-
sive simulations performed on real-world data. Our results
show that HSA provides 20.2% and 132.8% extra profit
than the truncated sample-average approximation (SAA)
approach [17], [18] and the greedy policy on average,
respectively. Moreover, we also study experiments to
show the low computation time and peak shaving effect
for HSA.

The rest of this article is organized as follows. We introduce
the system model and formulate the problem as an MDP problem
in Section II. Through rigorous analysis in Section III, we show
that it suffices to optimize the total charging rates rather than the
individual charging rates. In Section IV, we propose the HSA
algorithm with feature function approximation. The simulation
results are presented in Section V. Finally, Section VI concludes
this article.

II. SYSTEM MODEL AND MDP
A. System Model

We consider the operation of an EV charging station (see
Fig. 1) over a time horizon that is divided into 7" time slots.
EVs arrive at the charging station at random times. We denote
by Z;, the set of EVs that arrive at the charging station at the
beginning of time slot ¢, and by 7; the set of EVs that are 1)
already at the charging station before the new EVs Z; arrive at
time slot ¢, and 2) have not finished their charging. For notation
simplicity, we denote KC; := J; UZ; to be the set of EVs yet
to be charged in time slot ¢ after the arrival of Z,. For all EVs

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 06,2021 at 03:35:43 UTC from IEEE Xplore. Restrictions apply.



WANG et al.: REINFORCEMENT LEARNING FOR REAL-TIME PRICING AND SCHEDULING CONTROL IN EV CHARGING STATIONS 851

Residual demand and

residual parking time Electricity Price

7777777777777777 it

l (d'i, i7;> G }
Schedulin \
( QL Service Zone g), X g l

1

Utility
Company|

l«—L{

ﬁ « _ _ _Charging Price |
"

a)
a)
w)
a
z
5
o
=
[¢]

=

2

a)

&
Charging Station

(“o"‘-) ~&s EV Arrival “& “5‘9

et:zxit

——Flow of electric energy
******* >Flow of information

Fig. 1. EV charging station interaction system. Control signal: ;¢
and r¢.
100 T T . . . . . . .
—&—Elastic EV
= 8 =3¢ Inelastic EV 1 H
= o -~+=-Inelastic EV 2
M 607, the, . 1
= ~ —a&—Inelastic EV 3
2 *. e
. |
% 40 x.,, .
A g S ]
20 K., *...
Y R 1
01 02 03 04 05 06 07 08 09 1
Charging Price ($/KWh)
Fig. 2. Few examples of DR functions.

1 € 1y, let £, p;, and d; denote its arrival time, parking time,
and charging demand, respectively. In particular, the demand d;
must be satisfied before the departure of EV ¢ at time ¢ + p;.

At each slot ¢, the charging station determines the charging
rate of each EV i € Iy, denoted as x;; kWh. The charging rates
are constrained by

Ty <™ t=1,...,T, VieK; (la)
domp <™ t=1,...,T (1b)
i€y
te+p;
Z Tit Z di Vi (IC)
t=t¢

where ™% and e™?* are the maximum individual and aggre-
gate charging rates, respectively. Moreover, (1 ¢) guarantees that
the charging demand of each EV is satisfied before its departure
time.

In return, the charging station also determines an unique
public charging price r; $/kWh for all EVs that arrive at time
t. The price then remains constant for the entire parking time.
On the other hand, prices for EVs arriving at different times are
different. This is consistent with the practical situation, where
the EV owners accept the listed price when entering the parking
lot. The EVs are assumed to be price sensitive. In response to

ry, an EV ¢ € 7, sets its charging demand as d; = D;(r;) kWh,
where D;(-) is the DR function of EV 1.

Remark 1: The DR functions of different EVs can differ from
each other greatly. For instance, the DR functions of inelastic
users are constants. Moreover, when the charging price is too
high, the EV users may choose another charging station, i.e.,
the demand equals to zero. As a result, for elastic user ¢, D;(r)
always equals to zero as long as 7 is larger than a threshold r"s.
In Fig. 4, we plot several examples of DR functions.

As a result, at each time ¢ the charging station collects a
payment of >, r,D;(r;) from the EVs, and pays an elec-
tricity bill of ¢, ), i, Tit to the utility company. The industrial
electricity price charged to the charging station, i.e., ¢; $/kWh,
varies over time under the real-time pricing scheme [19].! Due
to the uncertainty of the EV arrival process and electricity price,
the charging station only knows the charging profiles of the EVs
that have already arrived. Likewise, only the past and current
electricity prices are known.

B. Markov Decision Process

At the beginning of each time slot ¢, the charging station
determines the charging price and charging schedule based on
its observation of the past and current events, including the
charging demand and the departure time of EVs that have already
arrived, and the electricity prices. The decision, in turn, affects
the residual charging demands left for future time slots. Thus,
the optimal decision is naturally a solution of an MDP [20]. In
the following, we discuss the state, action, transition function,
and reward function of the MDP.

1) System State: The system state at time ¢ is described by
Sy = (T, dt|vies,, Ptlvies, ), where d! and pt are the residual
charging demand and parking time of EV 7 at time ¢.

2) Action and Transition Function: Based on S; and the
observation of the real-time electricity price ¢; and the EV
arrivals Z;, the charging station decides the charging price r;
and the charging rate of each EV z;; at time t. As such, the
action A, at time ¢ is described by a high-dimensional vector,
i.e., Ay = (rt, Zit|viex, )- Under the charging schedule z;;, we
have

CZE—H = CZf —xy Vie T,
d™ = Di(ry) —wi Vi€ Ty )
at the beginning of time slot ¢ + 1. Meanwhile, the residual
parking time decreases as time increases from ¢ to ¢+ 1,
i.e.,
ptl=pt—1 Vied,
pil=pi—1 Viel 3)
where 132'“ = 0 indicates that EV 7 departures before time slot

t + 1 and thusi ¢ ;1. Therefore, J;41 and the state transition
function are calculated as follows:

T = Ki{i € Kept™ = 0ord™ =0} )

'We consider the real-time pricing scheme in our problem according to the
rule of California ISO for the high power consumption companies.
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and

St-‘rl = g(St7At7It7ct)

Jt+1 ~t+1
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As we can see, the problem now involves a high-dimensional ac-
tion space A;. Fortunately, as we will prove in Section I1I-A, the
action space can be equivalently reduced to a two-dimensional
space A; = (r¢, e;) without compromising the feasibility of the
scheduling decision. Here, e; := Zie,ct x;; is the total charging
rate at time ¢.

3) Reward Function and Decision Problem: The reward
function is closely related to the objective of the charging
station, e.g., the profit of the charging station, the benefit of EV
customers, the social welfare, etc. Without loss of generality,
we suppose that the objective is to maximize the profit of the
charging station in this article.” The reward function observed
by the charging station at time ¢ is the difference between the
payment it collects and the electricity bill it pays. That is,

ve(Se, Ar) ==Y reDi(ry) — cren. (6)

i€y

At each time ¢, the charging station aims to find the optimal
action A by solving the following MDP problem:

Qi(S1) = maxve(St, A) +7Ee, 701 Qe (9/(S1, AT2)) |

(7
subject to the physical and deadline constraints in (1 a)—(1 c).
Here, v € (0, 1) is a discount factor.

IIl. PROBLEM FORMULATION

Random EV arrival and departure causes the state and action
spaces of problem (7) to vary with time, rendering standard
solution algorithms inapplicable. Therefore, before we tackle
problem (7) by an RL approach in Section IV, we prove in
Section III-A that to fulfill EV’s charging demands before their
departure times, it suffices to optimize the total charging rate,
instead of individual charging rates, at time ¢. Then, the dimen-
sion of the action space is greatly reduced from ||+ 1 to
two.

A. Action Reduction

To satisfy the EVs’ charging demands, the charging schedule
x;+ must satisfy constraints (1). Note that if we sum (1 c) over
the EVs with the same departure time, we can conclude that
the summation of the residual demands with departure time
no later than ¢ + k£ must be no more than the summation of
the charging rates from ¢ to ¢ + k. Meanwhile, (1 a) and (1 b)
state that the total charging rate is bounded by not only the
total charging rate upper bound e™** but also the number of
parking EVs as the individual charging rate is also bounded by

2Changing the objective does not affect the structure of the problem, and our
analysis remains unchanged. By adapting the feature functions according to the
reward functions, our proposed algorithm still works.

max ;
,1.e.,

e; < min(e™, |Ky|a™*) Vi=1,...,T. ®)

Substituting the charging rate bound into the summation of
deadline constraints, we have the following Theorem 1.
For notational simplicity, we denote the longest residual
parking time of the set K; as L(K;) := max P
t

Theorem 1: If the total charging rate e, satisfies the following
inequalities for each time ¢

k
wx Y Drg-dn e Y d
1€Zs,pi<k T=1 i€Jy,pi<k
VE=0,...,L(K) (9a)
er < min(e™®, [IC|z™#x) (9b)

then there exists at least a set of x;;s that is feasible to
(1). Here, we denote the maximum total charging rates
in future time slots as e, = min(e™®, |y, |z™), 7 =
0,...,L(K;). One such set of x;s can be obtained by
e-supervised least laxity first (LLF) scheduling in Appendix A.

The detail proof of Theorem 1 could be find in Appendix B.

B. Problem Formulation

Thanks to Theorem 1, we can reduce the action space A, from
(74, Tit)iex, ) to (7, €t). Problem (7) can be recast as

Q:(Sh)

- mjx Ut(StaA) + ’YECt+l-,It+l {Qt-‘rl (g (StaAaIt))]

S.t.

k
ee> Y Di(r)=) e+ > d
T=I

i€Zy,pi<k i€k pi<k
Vi =0,...,L(K,)

e < min(e™™ [Ky|2™¥).

(10)

If the distributions of Z; and c; are explicitly and accurately
known, (10) can be solved by the conventional numerical
methods, such as SAA based on Monte Carlo sampling
techniques methods, although the complexity could be
prohibitively high. In practice, however, precise distributional
information is rarely available.

IV. RL APPROACH

In this section, we employ an RL algorithm to solve (10) based
on SARSA, which is data driven and requires no distributional
information about EV arrivals and electricity prices in the fu-
ture. Note that the traditional SARSA algorithm [21] cannot be
directly applied to our problem. This is because the dimension
of the state space S;, which is proportional to the cardinality
of |IC¢|, keeps varying with the random arrival and departure of
EVs. To address the problem, we propose an SARSA algorithm
with binary linear feature function approximation in this section.
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A. SARSA Algorithm

Since the distributions of Z; and ¢; are unknown, we replace
the state—value function Q;(.S;) in (10) by a state—action value
function Q(S;, A;), which is estimated from the observation
of the reward v:(S, A;) and the transition to the next state
(St+1, At+1). More specifically, it is updated as

Q(St, Ar) + (1 — ar)Q(St, Ay)
+ ay [V (St, Ar) + YQ(St41, A1)

where oy is the learning rate. Moreover, to balance between
exploration and exploitation, we adopt an e-greedy policy, where
the charging station adopts the optimal action that maximizes
Q(S:, Ay) with probability 1 — e and randomly chooses an
action with probability e. That is,

(an

Pr[A; = arg max Q(S, A)]=1—-¢,0<e< 1. (12)
tEAL

B. Linear Function Approximation

The conventional SARSA method requires Q(.S;, A;) to be
learned and stored for all (S;, A;) pairs. This is infeasible in
our problem due to the following two reasons. First, the state
and action spaces are continuous. Discritizing them leads to a
prohibitively large () table, if the quantization level is reasonably
small. Second, the space of .S; varies with time due to EV arrivals
and departures. To address the abovementioned issues, a differ-
ent table must be created and stored for each time ¢, which is not
practical at all. As such, we propose to approximate Q (S, A;)
by a linear combination of Y feature functions f,(S;, A;),
y=1,...,Y. The approximate of Q(S;, A;), referred to as
Q(Sy, Ay), is calculated as the weighted sum of the feature
values. Specifically

Y
Q(Si, Ay w) = > wy f, (Si, Ay)

y=1

13)

where w := (wy,...,wy) are the weights of feature values.
Then, the proposed SARSA algorithm only needs to learn w
instead of the ()-table for all pairs (S¢, A;). The feature functions
reduce the look-up space from a time-varying Q(.S;, A;)-table
to Y values.

1) Feature Functions: In this section, we introduce four
feature functions based on the fundamental attributes of the
problem. In particular, we construct the feature functions based
on the objective and constraint functions of the problem. First
of all, the total profit is the summation of the profits in each
time slot. At time ¢, the profit of the charging station consists
of the payments from the EV customers and the electricity bill.
Accordingly, the first and second feature functions are defined
as follows:

f1(St, Ay) = Z D;(t)r,

€Ly

(14)

and

fZ(ShAt) = —Ct€¢. (15)

Meanwhile, from (2), the charging rate at time ¢ directly
affects the residual demand d in future time slots. Less resid-
ual demands and later deadlines indicate more flexibility and,
hence, more potential future profit. The third and fourth feature
functions are proposed to prevent overly aggressive scheduling
decisions that may compromise the rewards in future time slots.
The same amount of demand with different deadlines result
in different limitations of future action spaces. To quantify
the deadline-biased demand, we use the arithmetic sequence
weights and geometric sequence weights to define the biases. In
particular, we define f3(S¢, A;) as follows:

>, 4

fSLA) == > (LK) — 1)
1€ ,pi <T+1
(16)

7=0,...,L(K¢)—1
where 6 is the predetermined common ratios of the arithmetic
sequence weights. Meanwhile, the weights may not be lin-
early increasing. As a result, we further define f4(S;, A;) as

follows:
> 6 >

7=1,...,L(Ky) 1€, pi <T

fa(Se, Ar) = — 7)

where 6, is the predetermined common ratios of the geometric
sequence weights. By “negative sign,” we mean that we prefer
smaller f3 and f4. The selection of the value of #; and 6, are
numerically studied, and set as 0.1 and 0.9 in our simulation
experiments.

2) Binary Feature Functions: It has been shown in [22] that
if the learning rate «; in (11) satisfies ), a;=o00, ), a?<oo,
the SARSA algorithm with linear function approximation con-
verges to a bounded region with probability one under the
condition that || fy||e = 1.°** However, the feature functions
defined previously can potentially be unbounded. Moreover, the
feature functions can take any real numbers, which may incur
high computation and storage costs. To enforce convergence
and reduce the computation and storage costs, we propose to
transform the feature functions defined previously into binary
feature functions. In particular, we denote fl, fz, fg and f4 as
the moving average of fi, f>, f3, and fy, respectively.5 If the
current reward is no less than the moving average f;, we set
fl (S;, Ap) to 1. Otherwise, it is set to 0. That is,

. Lif 3, Di(t)re > f
fl(st,At):{ 51 ZZGL ()Tt fl (18)

0, otherwise.
Likewise, fz(St, Ay), f3(St, Ap), and f4(St, Ay) are given by

~ 17if76,6,2‘f2
F(Se, A) ={ o

0, otherwise

f3(Se, Ar)

3By “converges to a bounded region,” we mean that there exits a bounded
region of the weight vector such that the weight vector of the algorithm converges
to the region with probability 1.

£y lloe = max((fil,. ., | fy])-

SIn this article, we use the moving average over the last 20 time slots. For the
first 20 time slots, f, is simply the average feature value.
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Algorithm 1: HSA (Hyperopia SARSA Algorithm).
Input: v
Output: A,
w <— arbitrary values; Observe 5.
fort :=1to oo do
Based on the current state S, execute action A;.
Obtain the immediate reward v;(S;, A;) and the new
system state S; 1.

maxaed, @(Siy1, A, w) wpl—e

a random action

Select Apqq {
w.p e

Update w < w + o [0,(Sy, Ay) + YQ(Sy41,

At+17w) - Q(St7At7w)] va(»S}7At7'LU)
Update St — St+1, At — At+1, and fy
end for

Lift— Y (L(K) —7)6 di> f3
- 7=0,...,L(K)—1 i€k, pi<TH1
0, otherwise
f4(St7 At)
Lif— Y 65 Y di>f
_ =1, L(K,) i€Kipi<T (19)

0, otherwise.

When the binary feature function approximation is well-defined,
the updates are performed on the weights w because they control
the contribution of each feature function on Q(St, Az, w). To
make the approximation precise, we aim to minimize the mean-
squared error over the dynamic arrival and electricity price, i.e.,
A 2

Er,., [(Q(St,Aa = QS A w)) ] .0
In (20), the expectation is taken over Z; and c;. Recall that we
do not assume any distribution of I; and ¢;. Instead, we adopt
a data-driven approach to update w based on the observations
of I; and c;. Taking the derivative of (20) over w, we get the
update direction as

Aw = afvy(Sy, Ap) + YQ(Str1, A1, w) — Q(Sh, Ay, w)]

VuwQ(S, A, w). 1)

In particular, at time ¢, the vector w is adjusted in the direction
(21) thatreduces the error between Q (S, A;) and Q (St, Ay, w).

The proposed algorithm, referred to as HSA, is shown in
Algorithm 1. By “hyperopia,” we mean that the algorithm aims
at the average profits, which prevents the charging station from
making too aggressive decisions that sacrifice future profits
for current profits. Without loss of generality, oy is selected
as oy = % This, together with the fact that || f,||. = 1,y =
1,...,Y, indicates that HSA converges to a bounded region
with probability one [22]. The convergence is also verified by
simulations in Section V-D.

Before leaving this section, we would like to emphasize that w
is updated based on the current realization of /; and ¢;, but not on
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Fig. 3. Data for conducting simulations. (a) Hourly electricity prices
of San Francisco. (b) Average hourly arrivals of different types of EVs.
(c) Average hourly electricity prices of San Francisco.

any distributional information or noncausal information about
the future. If the distribution of Z; and ¢; remains the same, the
online learning HSA algorithm obtains a stationary w-policy at
convergence. Meanwhile, our numerical results show that even
if the distribution is time varying, HSA is able to quickly adapt
the policy in response to the time varying distribution, as long
as the variation is no faster than the learning process.

V. EXPERIMENTS

In this section, we investigate the performance, computation
time, convergence, and impact to the grid of HSA. All the
computations are executed in MATLAB on a computer with
an Intel Core 17-3770 3.40 GHz CPU and 16 GB of memory.

A. Experimental Setup

We base our simulations on the historic hourly data, including
the day-ahead electricity prices [see Fig. 3(a) and (c)] of San
Francisco in California ISO [23] and the number of vehicle
arrivals for Richards Ave station near downtown Davis [see
Fig. 3(b)] [24]. The data of arrivals are the total number of the
passing-by vehicles. We use the scaled number of arrivals to
model the number of EVs that enter the charging station. The DR
function is modeled as D(r) = 8ir + (3,. The EVs are divided
into three types, namely emergent, normal, and residential uses.
The parameters of the three are listed in Table I.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 06,2021 at 03:35:43 UTC from IEEE Xplore. Restrictions apply.



WANG et al.: REINFORCEMENT LEARNING FOR REAL-TIME PRICING AND SCHEDULING CONTROL IN EV CHARGING STATIONS 855

TABLE |
PARAMETERS OF DIFFERENT TYPES OF EV CHARGING PROFILES

Type | Emergent | Normal | Residential
Variance | 447 | 396 | 2.63
B1 (KWh/S) o | 4 | 25
B2 (KWh) | 6 | 15 | 100
Parking Time (minutes) | 30 | 120 | 720

The dataset spans from July 1, 2016 to July 31, 2016. The
length of a time slot is one minute in our simulations. Unless
specified otherwise, we set the discount factor as v = 0.9.
Suppose that the total charging capacity of the charging station
ranges from 200 to 600 kW.°

The regulations of existing markets differ in their clearing
frequencies. Here, we consider two clearing frequencies, i.e.,
slowly varying and fast varying electricity prices. Under the
slowly varying case, the electricity price remains unchanged
during the same hour. Under the fast varying case, the electricity
price changes every 5 min.

In each experiment, we compare the performance of our pro-
posed HSA algorithm with the following benchmark algorithms.

1) Robust simulation-based policy improvement (RSPI):
Huang et al. [14] proposed the RSPI algorithm to stochas-
tically match the EV charging load with the wind supply.
Through extensive simulation, Huang et al. [14] demon-
strated that the RSPI can obtain a policy that is much
better than the state-of-the-art benchmark algorithms.

2) SAA: As discussed in Section III, the SAA method is
typically adopted as the optimal online algorithm [17],
[18]. However, since the complexity of SAA is too high,
truncation is often applied in SAA to reduce the complex-
ity at a cost of performance loss. We refer to the SAA with
a truncation period of k time slots as the SAA-k method.
In our simulations, the number of samples in each stage
is 10 000.

3) Greedy policy: The charging station makes the charging
and scheduling decision based on the assumption that
there is no future EV arrivals. Moreover, the future elec-
tricity prices are assumed to be equal to the average price.

B. Profit Performance

In the first experiment, we investigate how the charging station
pricing and scheduling strategy is and how the profit of the
charging station changes versus the total charging capacity.

In Fig. 4, we show the charging state of charge (SOC) using
data from July 1, 2016 as an example. At the beginning of the
plotted time horizon, three EVs arrive at the charging station
and request their charging demands in response to the charging
price. Because of the earliest departure time, EV 2 has the highest
priority, and thus, the charging SOC increases rapidly. From time
0to 10, the charging rate of EV 1 is always zero. This is because
EV 1 will park at the charging station for a long time and the

[Online]. Available: https://www.tesla.com/destination-charging
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Fig. 4. Curve of charging SOC. The departure times of EV1, EV2,
EV3, and EV4 are time 720, time 30, time 120, and time 50, respectively.

B o[~ Creedy h & sw|~*Greedy
— |~ HSA ] = |- HSA
—SAA-1 5 wo|#-SAA-1
n‘: 350 f-e-w SAA_2
© 30 |—a—=SAA-7 ,:.'
250 <f
o) SAA-8
© 0| RSP
U>J i 2 -
1008
< 50"

140 160 180 200 100 120 140 160 180 200

Charging Capcity (KW) Charging Capcity (KW)

(@) (b)

& ||-=Greedy & - -o-Greedy

s 1200 +SAA—1 ”, :‘:1200 +SAA-1 ",’

S 5

D- 800 n-

[0 [0

(o)) (o))

g« 8

D Loop [

> >

< <

Charging Capacity (100KW) Charging Capacity (100KW)

© (d)

Fig. 5. Profit performance comparison versus capacity. (a) Slowly

varying price. (b) Fast varying price. (c) Slowly varying price. (d) Fast
varying price.

charging station aims to charge EV 1 when the electricity price is
very low. From time 10 to 20, the charging capacity is occupied
by other EVs with tighter deadlines, and thus, the charging rate
of EV 1 and EV 3 are both zero. Due to the high electricity price,
the charging station stops all the charging from time 20 to 30.
Overall, the EV with the tightest deadline has the highest priority
for the charging service. The EVs that park at the charging station
for a very long time are only charged when the electricity price
is very low.

In Fig. 5, the profit of the charging station is evaluated under
both fast and slowly varying electricity prices. The average
profit per hour over 30 days are plotted in Fig. 5. We compare
the average profit performances in Fig. 5(a) and (b) when the
charging capacity increases from 100 to 200 kW, where we can
apply SAA to high order of k, e.g., SAA-7 and SAA-8. From our
simulations, we notice that the SAA algorithms with truncation
periods of more than 7 time slots achieve almost the same
average profit. Accordingly, we consider in practice the results
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Fig. 6. Average charging fee per kWh versus capacity.

of SAA-7 as the optimal online solution. On average, the HSA
algorithm achieves 79.80% and 83.79% profit of the optimal
solution under fast and slowly varying electricity prices, respec-
tively. However, the SAA algorithm not only takes long time to
compute but also requires the distributional future information,
which may not be practically, especially when k is large, in a real
scenario.

In Fig. 5(c) and (d), we consider charging stations with larger
charging capacities. Specifically, we vary the charging capacity
from 200 to 600 kW. In this case, the computation time of SAA
with a truncation period of more than 3 time slots can be as long
as several weeks. As such, we only simulate the performance of
the Greedy method, SAA-1, SAA-2, and RSPI for performance
comparison. Therefore, we only compare HSA with the Greedy
method, SAA-1, SAA-2, and RSPI when the charging capacity
increases from 200 to 600 kW. Overall, the profits increase as the
charging capacity increases. In comparison, the gaps between
the HSA, and the Greedy method and RSPI, widen when the
charging capacity becomes large. This is because with a large
charging capacity, the HSA method has more flexibility to shift
the charging demands to the time slots with low electricity
prices. In contrast, benchmark algorithms, especially the Greedy
method, always charges the EVs as fast as possible as long as
the marginal profit is positive.

From Fig. 5, we see that the proposed HSA method sig-
nificantly outperforms the benchmark methods under different
charging station capacity setting. The performance advantage is
especially notable when the charging capacity is large.

C. Charging Fee Performance

In the second experiment, we compare the performance
achieved by HSA with the Greedy method, SAA, and RSPI from
the EV owners perspective. The average charging fee per kWh
over 30 days are plotted in Fig. 6.

From Fig. 6, we can observe that HSA also achieves lower
average charging fee than the Greedy method, SAA, and RSPI
when the electricity price increases from 200 to 600 kWh. This,
together with the abovementioned performance evaluations from
the perspective of the charging station, implies that the proposed
charging station algorithm benefits both the charging station and
EV owners.

TABLE Il
NORMALIZED COMPUTATION TIME VERSUS CAPACITY

| 200KW | 300KW | 400 KW | 500 KW |
HSA | 1 [ 132 | 1713 ] 19|

600 KW
2.00

SAA-1 | 693x10° | 895x10® | L11x10* | 138x10* | 1.64x10*

SAA-2 | 9.17x10% | 1.13x107 | 1.27x107 | 2.85x107 | 1.57x107
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Fig. 7. Convergence of HSA versus capacity.

D. Computational Time

In the third experiment, we compare the computation time of
HSA and the SAA algorithms under different charging capacities
in Table II. We normalize the computation time of different
schemes to that of the HSA method under 200 kW capacity,
which is 0.14 s in our simulation. Each number in the table
is an average over 30 days under both slow and fast varying
cases. Table II shows that the average computation time of HSA
increases almost linearly with the charging capacity. In contrast,
for SAA-1 and SAA-2, the average computation times grow
much faster as the charging capacity increases. We notice that
the average computation time of SAA-2 is far greater than that
of SAA-1, which could be several weeks in our simulations. In
contrast, the proposed HSA only takes several seconds to com-
pute aresult. It is foreseeable that the computational complexity
of SAA will become extremely high as we further increase the
charging capacity.

E. Convergence of HSA

In the fourth experiment, we plot the average number of
iterations to convergence versus the total charging capacity
of the charging station in Fig. 7. Unless otherwise stated,
each point in the figure is an average performance of 100
random opening hours of the charging station with random
initial weights. For all discount factors, the number of iterations
until convergence increases as the charging capacity increases,
as expected. This is because that the larger the total charging
capacity is, the more actions the charging station could make.
The larger number of feasible actions leads to longer exploration
and convergence time. Similarly, for all charging capacities,
the number of iterations increases as the discount factor in-
creases. An intuitive explanation is that the large discount factors
value the future profits a lot and thus the charging station
use more iterations to learn the future profits more precisely.
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Overall, the average numbers of iterations to convergence are
497.6, 830.4, 1039.7, 1154.9, and 1229.0 for total charging
capacity 200 kWh, 300 kWh, 400 kWh, 500 kWh, and 600 kWh,
respectively.

Although the number of iterations increases as the system
size increases, we observe from Fig. 7 that the iteration number
increases slowly with the charging capacity, indicating that HSA
is scalable and efficient when applied by large-size charging
station.

In addition, we also plot the convergence of HSA in Fig. 8
when the distribution is time varying. In our simulation, the
mean of the electricity prices doubles after the 2800th arrival,
the arrival rate of emergent EVs reduces by one half after 4800th
arrival, and the mean of the electricity prices and the arrival rate
of normal EVs both double after 7300th arrival. We observe that
the profit converges to a new value quickly after the distribution
changes. Overall, when the electricity price increases or the
arrival rate decreases, the converged profit decreases, and vice
versa. This shows that even if the distribution is time varying,
HSA is able to quickly adapt the policy in response to the time
varying distribution.

F. Impact to the Grid

In the fifth experiment, we evaluate the average total charging
rate of the proposed HSA algorithm in Fig. 9(a). To facilitate the
comparison, we also plot the average total charging rate of SAA-
2 and the Greedy method as benchmark algorithms. Overall,
we observe that when the base-load is high [see Fig. 9(b)], the
charging load is relatively small, and vice versa. This is also
known as peak shaving, which can, in turn, reduce costs by
eliminating the need for peaking power plants. This is because
the real-time price is highly related to the base-load. In particular,
when the base-load is high, the grid issues a higher electricity
price that encourages the customers to use less power, and vice
versa, in the hope to reduce the peak load. Thus, there exists a
inverse correlation between the charging rate and the base-load.
The inverse correlation indicates that the charging station not
only maximizes its own profit but also reduces the peak load of
the local grid.

VI. CONCLUSION

In this article, we proposed a model-free data-driven method
for charging station pricing and scheduling strategies that
maximizes the objective of a charging station. The algorithm
was model-free in the sense that the decision does not depend on
any assumed distribution of uncertain events. We formulated the
pricing and scheduling problem into an MDP. In absence of any
noncausal information or distributional information, we solved
the MDP problem using an RL algorithm called SARSA. To
address the challenge arising from the time-varying continuous
state and action spaces in the RL problem, we first showed
that it suffices to optimize the total charging rates to fulfill
the charging requests before departures. Then, we proposed a
feature-based linear function approximator for the state—value
function to further enhance efficiency and generalization ability
of the proposed algorithm. The experimental substantiation
performed on a real-world data showed that HSA considerably
outperforms the benchmark algorithms in terms of the profit,
while owning a much lower computational complexity, reducing
the average charging fee of the EV owners, and shrinking the
peak load of the grid.

APPENDIX A
DEFINITION OF e-SUPERVISED LLF

Before we introduce e-supervised LLF, we first denote the
laxity of EV i in Definitions 1.

Definition 1: The laxity of EV i at tth time slot is the remain-
ing parking time minus the minimum charging time needed to
fulfill the remaining demand, i.e., l;; := p! — CZ§ Jamax,

Accordingly, we define e-supervised LLF as follows.

Definition 2: The e-supervised LLF policy determines the
charging rates starting from time ¢ = 1 as follows.

1) Step 1: e-supervised LLF searches for the EV 7 with the

least laxity.

2) Step 2: The policy increases x;, from O until one of the

following conditions satisfies: 1) d% =0,2) x;, = 2™,
3) e; = €, 4) the current EV is not the least laxity one.
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3) Step 3: If the total charging rate equals to the supervised
value €, t <— t 4 1; If the total charging rate equals to €;
and ¢t < T, the policy turns back to Step 1; otherwise, we
finish the schedule.

APPENDIX B
PROOF OF THEOREM 1

Proof: (a) We show that if there exists a feasible sched-
ule with the total charging rate e = (ey,...,er), then
there always exists a feasible schedule that follows e-
supervised LLF policy. Let &;; denote a feasible schedule
that does not follow e-supervised LLF policy. Then, there
must exist a (j,k,7) that Z;; > &k, and l;; > lg,. Be-
cause ljr > lxr, and both EVs fulfill their demand before
deadline, there must exist 7, that 2, < 3.,. Let Al :=
ljz, = lgr,. We can generate a new charging schedule as
Tit < Tit, fﬁjr. — :i’j‘,-] —+ min(ij.,.z,:%kn, %), i’kﬂ — ik‘rl —
min(&;.,, £k, , %), Tjry :i:m min(&;.,, Lk, , Azl), and
Try & Thor, + mln(xm,x;m, 5> ) The new schedule Z;s is
still a feasible one and the total charging rates of Z;s is the
same with the one of Z,;s. Repeating abovementioned, we finally
reach an e-supervised LLF schedule.

(b) We use the inductive method to show that if the total
charging rates e = (ey,...,er) for a set of charging requests
C from time 1 to T satisfy the following inequalities:

di,k=1,....T

>

i€C,t¢+pi<k

k
I
T=1

er <min(|{i € C|t < t,t <t + p;}z™™, e™™)
t=1,...,T (22)

then there exists at least a set of x;;s that is feasible to (1).

1) For |C] = 1, x4 = e, is a feasible schedule.

2) We suppose that for all |Ci| = k sets, under the condition
that

k
D e > > odi k=1,...T (23a)
t=1 i€Cy td+pi<k
er < min(|[{i € Cy|ty <t,t <t + p;Hla™™, em)

t=1,...,T (23b)

there exists at least a set of x;;s that satisfies (1).
Then, for any set whose |Cx1]| = k + 1 and e, that satisfies

> o

t=1 1€Ck 41|t +pi<k
er <min(|[{i € Cpp1[td < t,t <tF + pi}|a™>, ™)
t=1,...T (24)

!
we can construct an vector e and y; as follows:

6,1 = Z dl

i€Ck 41\, 12 +p;i<1

6;: Z di—

1€CK41 \i 3 +pi <t

e, t=2,...,T

’
Yt = € — €

(25)
where i = arg max t¢ 4+ p;.

i) From (23 a) we have S0 > dy . Therefore, the

charging request i is fulﬁlled before its deadline.
ii) From (25), we have

k
Se> Y 4

t=1 1€CK 41,68 +pi<k
e, < min(|{i € Cp|t? < bt < & 4 p;}|a™ax, emax)
t=1,....T (26)

As aresult, the charging requests C \i/ are fulfilled without
deadline violation.

Combining (i) and (ii), we get that for any set where |C41| =
k + 1 and any e, that satisfies (24), there exist at least a set of
xS that satisfy

max

.’ﬂitgl' Vtzl,...,T,iGICt

g Ty < e vt=1,....T
iEC}H,]
ti+pi

Z Ty =d; Vi€ Ck+1~

t=t¢

27

Combining 1) and 2) concludes the statement of (b).

(c) Considering a small time period from time slot ¢
to t+ L(K;) and the charging requests {(d’,p!)|i € K;} U
{(D;(re),pt)]i € T, }, we can derive from (b) that if (1, e;)
satisfies

ey > Z

1€1y,pi<k

Tt
S ¥
i€y, pi<k

Vk=0,.. LK) (28a)

(28b)

er < min(emax’ |]Ct |Imax)

then there exists at least a set of x;;s that is feasible to (1).
Moreover, we derive from (a) that one such set of x;;s could be
obtained by e-supervised LLF. O
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