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Locational Detection of the False Data Injection
Attack in a Smart Grid: A Multilabel

Classification Approach
Shuoyao Wang , Suzhi Bi , Senior Member, IEEE, and Ying-Jun Angela Zhang , Fellow, IEEE

Abstract—State estimation is critical to the monitoring and
control of smart grids. Recently, the false data injection attack
(FDIA) is emerging as a severe threat to state estimation.
Conventional FDIA detection approaches are limited by their
strong statistical knowledge assumptions, complexity, and hard-
ware cost. Moreover, most of the current FDIA detection
approaches focus on detecting the presence of FDIA, while the
important information of the exact injection locations is not
attainable. Inspired by the recent advances in deep learning, we
propose a deep-learning-based locational detection architecture
(DLLD) to detect the exact locations of FDIA in real time. The
DLLD architecture concatenates a convolutional neural network
(CNN) with a standard bad data detector (BDD). The BDD is
used to remove the low-quality data. The followed CNN, as a
multilabel classifier, is employed to capture the inconsistency and
co-occurrence dependency in the power flow measurements due
to the potential attacks. The proposed DLLD is “model-free” in
the sense that it does not leverage any prior statistical assump-
tions. It is also “cost-friendly” in the sense that it does not alter
the current BDD system and the runtime of the detection pro-
cess is only hundreds of microseconds on a household computer.
Through extensive experiments in the IEEE bus systems, we show
that DLLD can perform locational detection precisely under vari-
ous noise and attack conditions. In addition, we also demonstrate
that the employed multilabel classification approach effectively
enhances the presence-detection accuracy.

Index Terms—Convolutional neural network (CNN), false data
injection attack (FDIA), multilabel classification, power system,
security, state estimation.
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I. INTRODUCTION

A. Motivations and Summary of Contributions

THE POWER system is a fundamental economic-social
infrastructure. The recent trends of Industrial Internet-

of-Things (IIoT) technology have profoundly transformed the
conventional power system in the last decades. In particu-
lar, the latest advances in smart grids extensively integrate
the advanced information and communication technology
(ICT) [1] with the conventional power system, which signifi-
cantly increase the grid efficiency and reliability. However, the
new ICT systems employed by smart grids as well as other
IIoT networks are facing great security challenges especially
under the mounting threats of cyberattacks. State estimation,
which calculates the state of the power network system from
the raw measurements gathered by the supervisory control and
data acquisition (SCADA) system [2], plays a very essential
role in the control center. In particular, compromised system
state estimation may interfere the operation of power systems,
since many power system applications (such as economic dis-
patch, contingency analysis, etc.) rely on the results of state
estimation [3]. Liang et al. [4] and Deng et al. [5] presented
comprehensive surveys on the impacts of cyberattacks on
state estimation, e.g., line congestion [6], power outage [7],
communication block [8], etc.

Among the existing cyberattacks, the false data injec-
tion attack (FDIA) [9] is targeted at compromising power
system state estimation by injecting false data into meter
measurements. A well-structured FDIA can circumvent the
conventional bad data detector (BDD) in today’s SCADA
system, and thus is recognized as one of the most challeng-
ing threats to state estimation. For example, the work in [6]
demonstrated the economical effect of false data injection by
causing transmission line congestion. Various research has
been developed to investigate possible ways of constructing
FDIA [5]. For instance, a stealthy attack was introduced in [9],
which shows how this type of false data can pass the BDD
in the control center. It is shown in [10] that an undetectable
attack is also possible even if the attacker has partial con-
figuration information of the power network, and can only
manipulate a small set of the power network measurements.

At the same time, much research effort has been
devoted to defending against FDIA, which is broadly
classified into two categories, namely, physical-based
defending strategies [10]–[12] and data-dependent detection
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algorithms [13]–[23]. For example, Yang et al. [11] computed
the minimum number of sensors that must be compromised to
manipulate and developed an effective algorithm for optimal
PMU placement to defend against FDIA. Gai et al. [12]
introduced dynamic programming to produce an optimal
solution of maximizing privacy protection levels for resource-
constrained devices. Alternatively, various data-dependent
algorithms have been proposed to investigate the FDIA
detection problem, e.g., mixture Gaussian distribution meth-
ods [13], maximum-likelihood estimation [14], Kalman
filters [15], sparse optimization [16], network theory [17],
and similarity matching [18]. For instance, Ashok et al. [18]
leveraged load forecast information, generation schedules,
and synchrophasor data to obtain a statistical characterization
of the variation between SCADA-based state estimates and
forecast-based predictions to detect anomalies. However, the
effectiveness of most of the existing work highly depends
on the knowledge of the attack model and power system
information (e.g., the assumption of the near chordal sparsity
of the power grids). Recently, data-driven detection methods
based on deep learning have been proposed. Instead of
deriving an algorithm from a predefined attack and power
system model, deep learning methods allow the system to
learn the models directly from training data. A summary of
recent work is provided in Section I-B. However, to the best
of our knowledge, all the existing methods only focus on
detecting the presence of attacks, i.e., whether there exists a
malicious attack. In practice, other than presence detection,
it is essential to identify the location of the attack for the
fast deployment of effective countermeasures. In addition,
the inconsistency and co-occurrence dependency captured by
location identification provides additional room for enhancing
the presence-detection performance.

To bridge the gap, in this article, we consider a deep-
learning-based mechanism to achieve the locational detection
of FDIA. In particular, we formulate the FDIA locational
detection problem as a multilabel classification problem. To
solve this problem, we propose an architecture that concate-
nates a convolutional neural network (CNN) with a standard
BDD detector. The standard BDD detector is used to remove
the low-quality data. The followed CNN, as a multilabel
classifier, is employed to capture the inconsistency and co-
occurrence dependency introduced by FDIA. The architecture
is practical in the sense that it is model-free and requires no
alternation of the current BDD system. Moreover, the runtime
of the detection process is only hundreds of microseconds on
a household computer. In summary, our main contributions are
detailed as follows.

1) To the best of our knowledge, this article is among
the first to develop a deep-learning-based locational
detection mechanism of FDIA in the power system. In
particular, the proposed algorithm, referred to as DLLD,
concatenates a deep neural network with a standard
BDD detector. With updated network parameters, the
DLLD architecture can adapt to the variation of the
underlying attack and topology models.

2) To extract power flow correlation features and improve
the locational detection performance, we formulate the

FDIA locational detection problem as a multilabel clas-
sification problem and employ CNN as the classifier. We
carefully design the network structure (e.g., render up
pooling layers) and loss function according to the unique
structures of the FDIA locational detection problem.

3) We carry out extensive evaluations to verify and analyze
the proposed framework with open-source data and code.
The parameter sensitivity test is also performed to eval-
uate the performance and generalization ability of the
proposed mechanism. By the way of illustration, results
in the IEEE 118-bus system show that the proposed
DLLD on average achieves 93.18% locational detec-
tion accuracy and 99.1% presence-detection accuracy.
Overall, we conclude that DLLD is a scalable robust
mechanism with high accuracy.

B. Related Work

There have been some existing FDIA detection meth-
ods using machine learning technologies. For instance,
Ganjkhani et al. [19] used a nonlinear autoregressive exoge-
nous network to identify the injected bad data in state
estimation and generate FDIAs, where less than 10% of the
generated FDIAs are detected by conventional processors.
Ozay et al. [20] proposed semisupervised and online learning
algorithms to detect FDIA. The algorithms can be employed
in hierarchical and topological networks for different attack
scenarios. Both supervised and unsupervised learning meth-
ods were proposed in [21] to distinguish the stealthy FDIA
and safe operation modes. He et al. [22] used the conditional
deep belief network (CDBN) to reveal the high-dimensional
temporal behavior features of the stealthy FDIAs, and success-
fully detected 90% of the FDIAs. Most recently, Yu et al. [23]
employed a discrete wavelet transform to reveal the spatial data
characteristics and deep neural network to capture the tempo-
ral data correlations for FDIA detection. Therein, the detection
accuracy is improved from around 70% by Kalman filters [15]
to more than 90%. Overall, all the existing works focused only
on detecting the presence of the attack. In contrast, the FDIA
locational detection considered in this article shares some sim-
ilarities with the multilabel classification problem in image
processing and speech recognition [24], [25].

Krizhevsky et al. [26] proposed a deep CNN for image clas-
sification, consisting of convolutional layers, pooling layers,
and fully connected layers. A variant of this model won the
ILSVRC-2012 competition, and CNNs have received skyrock-
eted interest in both academia and industry since then. More
recently, CNNs have played a crucial role in AlphaGo [27]
which beats the best human player in Go games. One main
advantage of utilizing a CNN for image multilabel classifica-
tion is that the semantic structure of multilabel images can
be better preserved [24]. In this article, we intend to capture
the inconsistency and co-occurrence dependency on multiple
measurements introduced by FDIA, which has a similar fla-
vor of semantic structures in multilabel images classifications.
We, therefore, apply CNN as the core module for locational
detection of FDIA in this article.

The remainder of this article is organized as follows. We
briefly introduce the conventional state estimation method and
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its vulnerability against FDIA in Section II. In Section III,
we illustrate the architecture and implementation issues on
the proposed FDIA locational detection mechanism. The sim-
ulation results with parameter sensitivity are presented in
Section IV. Finally, this article is concluded in Section V.

II. PRELIMINARY

A. Power System State Estimation

State estimation is to infer the operational state of a power
system from the available meter measurements in an SCADA
system. In this article, we focus on the state estimation in
dc microgrids, which are widely deployed due to the advan-
tages over their ac counterparts, including higher reliability,
simpler control, and more efficient interfacing with renew-
able energy sources and energy storage units [28]. In a dc
model, the relationship between the n-dimensional measure-
ment z = (z1, z2, . . . , zn)

T and the m-dimensional system state
x = (x1, x2, . . . , xm)T can be expressed as

z = Hx + e (1)

where e = (e1, e2, . . . , en)
T and H denote the measurement

noise and Jacobian matrix, respectively.
The conventional BDD approaches compare the �2-norm of

the measurement residual with a threshold τ to check whether
there exists a low quality, i.e., bad or compromised, measure-
ments [9]. In this case, the detector announces the presence
of an attack as long as

R = ‖z − Hx‖2
2 ≥ τ. (2)

B. False Data Injection Attack

The objective of FDIA is to mislead the system operator
into considering a compromised state estimate x̂ = x + c as
a valid estimation, where c �= 0 is the deviation of the power
system state. To achieve this, an attacker changes the received
measurements at the control center to ẑ = z + a, where a =
(a1, a2, . . . , an)

T is the compromised attack vector. Then, the
observation model can be described as

ẑ = Hx + e + a. (3)

In general, an unstructured a is likely to be identified by the
traditional BDD in (2). To circumvent the BDD mechanism,
the attack vector should be structured, such as a = Hc. In
such cases, the �2-norm of the residual is unchanged

∥
∥ẑ − Hx̂

∥
∥ = ‖z + a − H(x + c)‖ = ‖z − Hx‖ (4)

and thus the attack can bypass the BDD. Accordingly, the
power system operator would mistake x + c for a valid esti-
mate, and thus an error vector c is introduced.

In reality, getting access to all information of H comes
at an unbearable cost and effort for attackers because the
information is kept confidential and highly secured. In prac-
tice, constructing a successful stealthy FDIA may only require
compromising a small number of meters [10], [29], even
with partial knowledge of system parameters. For instance,
Bi and Zhang [10] proved that an optimal stealthy attack that

Fig. 1. Proposed FDIA locational detection mechanism.

minimizes the attackers’ resource cost can be constructed effi-
ciently through solving a min-cut problem, when the attacker
only has limited knowledge of H.

In this article, we develop a new data-driven mechanism
that can detect the location of FDIA in a SCADA system. It
is formulated as a multilabel classification problem that deter-
mines whether each meter measurement is compromised. The
problem is formulated and solved in Section III.

III. LOCATIONAL DETECTION: MULTILABEL

CLASSIFICATION APPROACH

In this article, we propose a multilabel classification mech-
anism using the recent advances in deep learning technologies
to capture the inconsistency and co-occurrence dependency
caused by FDIA. In this section, we first elaborate on the
structure of the proposed mechanism. Then, we present the
detailed implementation of the mechanism.

A. Locational Detection

Mathematically, to detect the existence of FDIA is equiv-
alent to classifying the whole measurement vector, i.e., x,
into two categories: 1) exist or 2) not. This is a single-
label classification problem from the perspective of machine
learning, whereas to identify the location of the attack is
equivalent to classifying each element of the measurement
vector, i.e., xi, into two categories. That is, the locational
detection problem is a multilabel classification problem from
the perspective of machine learning. Although deep learn-
ing technologies have achieved great success in single-label
classification over the past decade, multilabel classification
is still attracting much research interest due to its complex-
ity and wide applicability. Unlike single-label classification,
multilabel classification problems can be evaluated with a
multitude of quality measures, often conflicting in nature.
Besides, the labels of multilabel classification problems are
usually extremely unbalanced, and thus the single-label bal-
ance methods (e.g., downsampling) do not work. To address
the problem, we carefully design the CNN structure in Fig. 2 to
extract and describe the associated data information to produce
satisfactory performances in multilabel classification. In addi-
tion, we will also evaluate the improvements over the original
single-label methods in our numerical experiments.
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Fig. 2. Architecture of 1-D deep CNN for DLLD. 1: compromised meter; and 0: uncompromised meter.

B. Proposed Mechanism

The proposed FDIA locational detection mechanism is
depicted in Fig. 1. The proposed framework receives measure-
ments from consecutive discrete sampling time instances, i.e.,
the time instances when the conventional state estimation takes
place.1 This, together with the fact that the training process of
the CNN classifier only requires measurements and ground-
truth labels and confirms that the proposed mechanism does
not leverage any prior statistical assumptions (e.g., H). At a
sampling time instance t, the input data (the real-time mea-
surement) first goes through the BDD detector. As described
in (2), BDD evaluates the quality of the measurement data
by calculating the �2-norm of the measurement residual and
comparing with a predetermined threshold τ . BDD reports the
current meter as compromised or noisy if R ≥ τ .2 By doing
so, the sampling and communication errors as well as poten-
tial unstructured FDIA can be effectively detected, because of
their high residual values [5]. If the measurement data pass
the BDD, a CNN-based multilabel classifier will detect the
presence and location of structured FDIAs by analyzing the
inconsistency and co-occurrence dependency of the data.

The proposed DLLD scheme employs a CNN to extract and
analyze the high-dimensional temporal features of FDIA.

1) Data: We denote the input (i.e., the measurements), the
ground-truth labels (i.e., the meter classes), and the output (i.e.,
the classification of the CNN at time t) as zt = (zt

1, . . . , zt
n),

yt = (yt
1, . . . , yt

n), and ŷt = (ŷt
1, . . . , ŷt

n), respectively. For
example, in our numerical experiments in Section IV, the
dimensions of input and output data are both 19 for the IEEE
14-bus system, because there are 19 measurements inside the
14-bus system in our simulation settings. The ground-truth
label of meter i at time t is determined according to the
following rule:

yt
i =

{

1, the meter i at time t is compromised
0, otherwise.

(5)

The output of CNN ŷt
n’s is continuous numbers between

0 and 1. Correspondingly, the classifier defines a discrimi-
nation threshold to quantify the outputs to 0 or 1. The dis-
crimination threshold can be adjusted to increase or decrease

1The sample rates range from 100 Hz (burst mode recording) to hourly
readings for SCADA systems [30].

2Following the common practice [22], the selection of the value of the
threshold τ is numerically studied and selected as 10 in this article.

the sensitivity to application factors. Unless specified other-
wise, the discrimination threshold is set to 0.5 in this article
following the common practice.

2) Architecture: The architecture of the deep CNN for
FDIA locational detection is shown in Fig. 2. It contains
an input layer, several convolutional layers, one flattening
layer, one fully connected hidden layer, and an output layer.
The input layer has n input numbers representing the n
measurements at each time instance. Each filter in the first
convolutional layer is applied to the windows in the input layer
to generate features through the convolution operation, batch
normalization, and nonlinear transformation with the rectified-
linear unit (ReLU) activation function [31]. The feature maps
c1,j of the first convolutional layer generated from the input
data z, which can be expressed as

c1,j = ReLU
(

z ∗ h1,j + b1,j
)

. (6)

Here, h1,j is the jth convolution kernel, which is essentially a
1-D filter,3 and b1,j is the corresponding scalar bias. In (6), a
scalar bias b1,j is added to all the convolution output, which
is a commonly used representation in deep learning [31]. The
convolution operation is denoted by ∗ in (6) and the output at
position i is defined as

l1,j
∑

k=1

(

h1,j
)

[i] × (z)
[

i − k + l1,j

2

]

. (7)

Here, l1,j and × denote the length of the filter h1,j and the
inner product operation, respectively.

The hidden features generated by filters in the (q − 1)th
convolutional layer are then used as the input to the qth con-
volutional layer and processed in a similar way. The output
can be written as

cq,j = ReLU
(

cq−1 ∗ hq,j + bq,j
)

(8)

where cq,j is the jth feature map at the qth convolutional layer.
The number of filters in each layer and depth of convolutional
layers are hyperparameters, which will be further discussed in
the simulation section. The extracted features learned by the
last convolutional layer, i.e., the qmaxth convolutional layer, are
merged into one single vector in the flatten layer and fed into

31/2/3-D: one/two/three-dimensional.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 06,2021 at 13:46:56 UTC from IEEE Xplore.  Restrictions apply. 



8222 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 9, SEPTEMBER 2020

TABLE I
DEEP-LEARNING-BASED LOCATIONAL DETECTION (DLLD) NETWORK

FOR THE IEEE 14-BUS SYSTEM. TOTAL PARAMETERS:
247 827; TRAINABLE PARAMETERS: 246 675;

AND NONTRAINABLE PARAMETERS: 1152

a fully connected hidden layer (also known as dense layer)
with the activation function ReLU. That is

cF,j = ReLU
(

wF × cqmax + bF
)

(9)

where cF,j, wF , and bF denote the feature maps, weights, and
biases of the flatten layer, respectively. The nodes in the dense
layer are also fully connected to n nodes in the output layer.
The sigmoid function is applied to the nodes in the output
layer to classify the type of each measurement. For meter j at
time t, the final multilabel classification result ŷt

j is

ŷt
j = sigmoid(wD × cF + bD) (10)

where wD and bD denote the weights and biases of the dense
layer, respectively.

Overall, we plot Table I to show an example of the DLLD
network for the IEEE 14-bus system.

Remark 1: Besides the convolutional layers, pooling and
dropout layers are also important components in ordinary CNN
architectures. However, they do not appear in our design for
the following reasons. First, pooling layers are normally used
for the downsampling of high-dimensional computation, e.g.,
2-D-convolution and 3-D-convolution computations. In our
problem, all the convolutional layers are 1-D-convolutional
layers whose computation under GPU programming is quite
efficient. Second, traditionally, pooling layers are one of the
main factors to achieve nonlinear mapping in deep CNN.
However, the popular ReLU active function also introduces
nonlinearity in deep models. Therefore, rendering up pooling
layers sometimes achieves even a better performance, because
useful details may be discarded by pooling layers [32]. Third,
dropout is a widely used technique to control overfitting.
Meanwhile, the proposed DLLD already has employed the
mini-batch methodology for overfitting control, which inten-
tionally introduces sufficient noise to each gradient update.
Indeed, we have tested the performance of pooling and
dropout, and found that they do not provide any performance
gain.

C. Training

Before using the proposed FDIA locational detection
scheme to classify the measurements, we need to first optimize
the learning parameters, i.e., the filters h, weights w, and biases
b, in each layer. This parameter tunning process is called train-
ing, which aims to find the optimal parameters that match the
input and output in the training data.

1) Mini-Batch and Cross-Validation: To enhance the con-
vergence rate and avoid overfitting, we adopt the mini-batch
gradient descent method to train the network. In our simula-
tions, each mini-batch contains 200 instances of data. In each
iteration, a fixed number of training samples, i.e., a mini-batch,
are randomly selected from the training set to calculate the gra-
dient. Following the common practice in machine learning, we
separate 7/10 data into the training set and 3/10 data into the
validation set for each batch. Then, fitting is done using the
Adam optimizer with an initial learning rate of 0.001 and a
patience of 5.

2) Loss Function: To find the optimal learning parameter
set, we introduce a loss function to measure the differ-
ence between the actual output and the ground-truth output
among each mini-batch. To extend our framework to multilabel
classification, the loss function of the proposed CNN is
chosen as the cross-entropy function. In particular, the cross-
entropy loss function over a mini-batch θ = {t1, . . . , t200} is
expressed as

cross-entropy(θ)

=
∑

t∈θ

−1

n

n
∑

i=1

(

ŷt
i log

(

yt
i

) + (

1 − ŷt
i log

(

1 − yt
i

)))

. (11)

With clearly defined loss function, we can adopt the Adam [31]
optimizer to find the optimal parameters given a mini-batch θ .

IV. EXPERIMENTS

In this section, we first present the training and testing data
generation step by step in Section IV-A. In Section IV-B,
we introduce the implementation details and benchmark algo-
rithms. Then, we show detailed examples to demonstrate
how the proposed method captures the inconsistency and
co-occurrence dependency introduced by FDIA on nearby
measurements in Section IV-C. The detection accuracy and
robustness of locational and presence detection are investigated
in Sections IV-C and IV-D, respectively.

A. Data Set

In this section, we assess the performance of the proposed
FDIA locational detection mechanism in the IEEE 14- and
118-bus power systems. The topologies of the grid can be
obtained from MATPOWER [33] and summarized in Table II.
The measurements of meters located at adjacent lines or
buses are highly correlated. Besides, CNN obtains the fea-
tures by analyzing the meter measurements of adjacent indices.
Therefore, we index the meter measurements based on the
network topology. In this article, we first index the line flow
meters from q = 1 as follows: 1) we index the unindexed
meters connecting bus q and set q = q + 1 and 2) if
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TABLE II
STATISTICS OF IEEE 14- AND 118-BUS POWER TEST SYSTEMS

Fig. 3. Indexed IEEE 14-bus system.

q > 14(118), we terminate the index process; otherwise, the
policy turns back to 1). Then, we continue the index from line
meters and label the injection meters based on the ascending
order of the bus index. For illustration purpose, an indexed
measurement placement of the IEEE 14-bus system is plot-
ted in Fig. 3. The measurement placement and indices for
the 118-bus system are omitted for the simplicity of exposi-
tions. The complete source code implementing DLLD and data
sets is available at https://github.com/wsyCUHK/WSYCUHK_
FDIA.

1) Base Load: We first generate uncompromised data by
extending the real-world data through artificially generating
the loads on each bus. The generated loads follow a normal
distribution whose mean is equal to the baseload and standard
variance is equal to 1/6 of the value of base load [14], [34].
Besides, we also generate compromised data. As mentioned
in Section I, there are two categories of FDIAs, namely,
well-structured FDIA and unstructured FDIA. Unstructured
FDIAs can be precluded by the conventional BDD process
inside our DLLD framework. The system will consider them
as faulty measurements and discard them directly. Hence, we
only generate well-structured FDIA.

2) Attack Implementation: Due to the limited budgets of
attackers, we generate the compromised data based on the min-
cut FDIA model with partial network knowledge in [10]. More
specifically, the optimal partial knowledge attack is the one
who requires the minimum cost of obtaining the knowledge
of a particular transmission line impedance. Without loss of
generality, the system parameters are generated as follows.

1) The number of target state variables follows a discrete
uniform (2, 5) distribution in the 14-bus system and
a discrete uniform (2, 10) distribution in the 118-bus
system, respectively.

2) The cost of obtaining the knowledge of a particular
transmission line impedance is set in the same way as
in [10].

The �2-norm of the injection data varies from 1 to 5 in Fig. 5
and is set as 1 in all other experiments.

3) Measurement Noise: Last but not least, noticing that
there exists an inevitable dynamic noise in measurement and
communication processes, we also append random Gaussian
noises to the measurement values. In particular, the noise stan-
dard derivation varies from 0.1 to 0.5 in Fig. 5 and is set as
0.2 in all other experiments.

4) Training and Testing Data Set: Under each level of
attack and noise, we generate a training set that con-
tains 10 000 compromised instances and 100 000 instances
without any injection. We generate another ten indepen-
dent testing data sets that contain 500 compromised time
instances and 500 instances without any injection for
performance evaluation. Each value presented in this sec-
tion is averaged over ten independent testing sets. The
detailed generation process and data sets are available at
https://github.com/wsyCUHK/WSYCUHK_FDIA.

B. Implementation Details

All simulations are conducted on a machine with an Intel
Xeon E5-2630 CPU, two nVidia GTX 1080 GPUs, and 64-GB
RAM. The multilayer perceptron network (MLP) and CNN are
constructed using Keras [35] for a computational speed boost.
For benchmark methods, we compare the proposed scheme
with the state-of-the-art methods, including support vector
machine (SVM), light gradient boosting machine (LightGBM),
and deep-learning-based identification (DLBI) [22].4

1) DLBI: He et al. [22] proposed a CDBN architecture to
extract high-dimensional temporal features. The CDBN
detects the FDIA by analyzing the temporal attack pat-
terns that are presented by the real-time measurement
data from the geographically distributed meters.

2) SVM: SVM [36] is a maximum margin classifier that
constructs a hyperplane(s) in a high-dimensional space.
It is widely used since it achieved top performance
in some classification problems (e.g., text spam and
images) in the 1990s.

3) LightGBM: LightGBM [37] is a gradient boosting
framework that uses tree-based learning algorithms pub-
lished by Microsoft. LightGBM is being widely used in
many winning solutions of machine learning competi-
tions.

Hyperparameter (e.g., the number of convolutional layers
and the number of filters) tuning is done using a random search
strategy, where we select the model that assigns the highest
F1-Score (defined in Section IV-C) to the validation data.

C. Locational Detection Performance

1) Performance Evaluation Metrics: In our experiments,
we employ the precision and recall of the generated outputs

4The open-source implementation of SVN and LightGBM can be find
in https://github.com/soloice/SVM-python and https://github.com/Microsoft/
LightGBM, respectively.
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as performance evaluation metrics. The precision and recall
are defined as

precision = True Positive Rate

True Positive Rate + False-Positive Rate
(12)

and

recall = True Positive Rate

True Positive Rate + False-Negative Rate
(13)

respectively. In this article, true positive rate (TPR), false-
positive rate (FPR), and false-negative rate (FNR) are defined
as the probability that a compromised location is labeled
as compromised, an uncompromised location is labeled as
compromised, and an uncompromised location is labeled as
uncompromised, respectively. To strike a balance between the
precision and recall, we also strike the F1-score. In particular,
F1-score is the geometrical average of the precision and recall,
and is expressed as

F1-Score = 2 × Precision × Recall

Precision + Recall
. (14)

Moreover, we introduce row accuracy (RACC) as an evalu-
ation metric. RACC is defined as the probability that all the
uncompromised locations in the grid are labeled as uncom-
promised and all the compromised locations are labeled as
compromised.

We first evaluate the proposed method when the �2-norm
of the injection data is 2 and the standard deviation of
the measurement noise is 0.2. We compare the proposed
mechanism not only with the state-of-the-art methods: SVM
and LightGBM but also with an alternative of the proposed
mechanism, where the CNNs in our location and detec-
tion mechanism is replaced by the MLPs. Accordingly, the
proposed mechanism and the MLP alternative are named as
DLLD and MLP-DLLD, respectively. In particular, the number
of hidden layers in the MLP varies from 2 to 6 and the number
of units is selected with the highest F1-Score. To guarantee
a fair comparison, we use the same data sets for the training
and testing procedure of all four methods.

2) IEEE 14-Bus System: First, we compare the four metrics
among SVM, LightGBM, and MLP-DLLD with a different
number of hidden layers, and DLLD with a different number of
hidden layers in the IEEE 14-bus system in Table III. Overall,
DLLD outperforms the three benchmark algorithms in both
F1-Score and RACC, which justifies the effectiveness of the
proposed mechanism.

From Table III, we observe the metrics increase when the
number of hidden layers of the MLP increases from 2 to 4.
Meanwhile, the metrics decrease slightly when the number of
hidden layers of the MLP increases from 4 to 6. This is known
as the degradation problem: with the network depth increas-
ing, accuracy gets saturated and then degrades rapidly [32].
On the other hand, we also observe that the metrics increase
when the number of hidden layers of CNN increases from
2 to 5 and keeps almost the same when the number of hidden
layers of CNN increases from 5 to 6. Overall, the fine-tuned
DLLD architecture achieves very high F1-Score and RACC.
This, together with the fact that the computational complexity
also increases with the number of hidden layers and drives

TABLE III
PERFORMANCE COMPARISON IN THE IEEE 14-BUS SYSTEM

TABLE IV
CLASSIFICATION RESULTS ON THE 3RD, 4TH, AND 11TH MEASUREMENTS

us to design our DLLD architecture with five hidden layers,
in order to achieve a good balance between location accuracy
and computational complexity.

A point worth noting is that SVM and LightGBM are con-
ventionally proposed for single-label multiclass classification
problems. In order to solve the multilabel classification prob-
lems using SVM and LightGBM, we convert the multilabel
data set to the single-label data set. For example, in the IEEE
14-bus system, the 19 binary labels (y1

t , y2
t , . . . , y19

t ) are con-
verted into one label with a class size of 219. Due to the
high co-coherence dependency, after we remove the classes
that never happen in the whole data set, such that the class
size shrinks from 219 to 80. Then, we can employ SVM and
LightGBM to classify the converted multiclass problem. As a
result, the RACCs achieved by SVM and LightGBM are higher
than the ones achieved by MLP-DLLD while the precises and
recalls are lower.

We would like to emphasize that the high accuracy achieved
by the proposed CNN structure is due to the fact that our
proposed CNN structure can capture the inconsistency and co-
occurrence dependency on nearby measurements introduced
by FDIA. For example, CNN can capture the co-occurrence
of FDIA on the 3rd and 4th measurements as they are directly
connected. In Table IV, we show the locational classification
results on the 3rd, 4th, and 11th measurements. For exam-
ple, in the first three rows, we demonstrate the classification
accuracy for four attack cases: 1) the 3rd measurement is
compromised and the 4th is not; 2) the 4th measurements
are compromised and the 3rd is not; 3) both the 3rd and
4th measurements are compromised; and 4) neither the 3rd
and 4th measurements are compromised. We observe that the
co-occurrence of FDIA on the 3rd and 4th measurements is
much larger than the one on the 3rd and 11th measurements
and the classification accuracy is also higher than the one
on the 3rd and 11th measurements. It is because the 3rd
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TABLE V
PERFORMANCE COMPARISON IN THE IEEE 118-BUS SYSTEM

Fig. 4. ROC curve for the proposed mechanism. TPR rises to 0.99 extremely
fast when FPR increases from 0 to 0.0002 and thus we only plot TPR versus
FPR from 0 to 0.002.

and 4th measurements are directly connected and thus the
measurements are highly coupled.

3) IEEE 118-Bus System: The performance comparison in
the IEEE 118-bus system is given in Table V. We can observe
that the precises and recalls are only about 1%, and the RACCs
are always near 50% under MLP-DLLD. This is because when
the bus system is large, MLP-DLLD can only detect the pres-
ence of the attack but not its location. Moreover, as expected,
SVM and LightGBM do not converge in the IEEE 118-bus
system after we go through 200 epochs. This is due to the
fact that the conversion introduces a huge number of classes,
e.g., more than 10 000 in our simulation. In contrast, DLLD
still achieves 99.37 F1-Score and 93.2% RACC. Hence, we
conclude that the proposed DLLD is scalable when the system
size becomes large.

As discussed in Section III-B, the outputs of the CNN
ŷt

n’s are continuous within [0, 1], and are quantized to 0 or
1 by a discrimination threshold. In the above figures, we
have fixed the discrimination threshold at 0.5. In general, the
value of the threshold determines the tradeoff between TPR
and FPR. Specifically, a lower threshold results in a higher
TPR and a lower FPR. We investigate the tradeoff in Fig. 4,
which plots FPR versus TPR when the threshold varies from
0 to 1. To depict relative tradeoffs between TPR and FPR,
the area under the ROC (AUC) is commonly considered as a
performance metric of the discriminatory capacity [38]. Here,
AUC is defined as the area between the FPR, TPR, x-axis, and
y-axis. An excellent model has AUC near to 1, which means
that it has a good measure of separability. The model pred-
icates 1s as 1s and 0s as 0s. When a model has AUC near
to 0, the model predicates 0s as 1s and 1s as 0s [38]. From

Fig. 5. F1-Score comparison in the IEEE 14-bus system. (a) Comparison
versus the standard deviation of noise. (b) Comparison versus �2-norm of the
injection data.

the figure, we can see the proposed mechanism has AUC near
to 1, which represents the excellent discriminatory capacity of
the proposed mechanism.

4) Robustness: In Fig. 5, we evaluate the robustness of the
proposed mechanism against the aggressiveness of the attacker
and the noise in the data acquisition environment. In particular,
we evaluate the proposed mechanism as follows.

1) Aggressiveness: We fixed the standard deviation σ to be
0.2, and varied the �2-norm of the injection from 1 to 5.

2) Noise: We fix the �2-norm of the injection to be 2, and
vary the standard deviation σ from 0.1 to 0.5.

Fig. 5 shows that compared with MLP-DLLD, SVM,
and LightGBM, DLLD achieves the highest F1-Score. From
Fig. 5(a), the F1-Score of all of the four schemes increases
with the �2-norm of the injection data. This is because that
the patterns of the normal data and the compromised data
become more distinguishable when the attack is more aggres-
sive. Likewise, from Fig. 5(b), we can see that when the
noise level increases, the F1-Score of all of the four schemes
decreases. This is because that the patterns of the normal data
and the compromised data are less distinguishable when the
noise power increases. In both subfigures, the proposed DLLD
can always achieve F1-Score near 100, when the standard devi-
ation varies from 0.1 to 0.5 and the �2-norm of the injection
data varies from 1 to 5. This implies that the proposed high
accuracy DLLD mechanism is robust to the environmental
noise and the size of attack injection.

We would like to emphasize that the runtime of the detection
process is only about 100 μs, where the sampling rate for
SCADA systems is larger than 100 Hz. This, together with the
fact that our simulations were run on a machine with an Intel
Xeon E5-2630 CPU, two nVidia GTX 1080 GPUs, and 64-GB
RAM, indicates that the proposed mechanism is practical and
cost-friendly.

D. Presence-Detection Performance

We take one step back and investigate how well the
proposed mechanism works in terms of detecting the presence
of attacks. In particular, we regard the power system as
uncompromised or the attacks are absent if ŷi

t = 0, for all
i = 1, . . . , n. Otherwise, the power system is regarded as
compromised or the attacks are present. In Fig. 6, we investi-
gate the FDIA presence-detection performance of the proposed
mechanism. In particular, we compare the detection accuracy
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Fig. 6. Accuracy of stealthy FDIA detection in the IEEE 118-bus system.
(a) Accuracy versus �2-norm of the injection data. (b) Accuracy versus the
standard deviation of measurement noise.

with the two benchmarks: 1) SVM and 2) DLBI. Moreover,
since the performance gaps in the IEEE 118-bus system are
more distinct than those in the IEEE 14-bus system. We only
plot the accuracy in the IEEE 118-bus system for simplicity.

In Fig. 6(a), we compare the detection accuracy achieved
by DLBI, SVM, MLP-DLLD, and DLLD. Overall, compared
with DLBI and SVM methods, the proposed detection scheme
achieves the highest detection accuracy. Moreover, we can also
see that as the noise level increases, the detection accuracy of
DLBI and SVM methods decreases, which is similar to the
conclusion drawn in Fig. 5(a).

Finally, we investigate the presence-detection accuracy ver-
sus the standard deviation of measurement noise in Fig. 6(b).
As expected, the proposed scheme achieves the highest detec-
tion accuracy. Similar to the conclusion in Fig. 5(b), the
detection accuracy of all the four methods increases with the
standard deviation of the noise. Before we leave this sec-
tion, we would like to emphasize that the proposed multilabel
classification method, although is targeted at detecting FDIA
locations, also improves the presence-detection accuracy. This
is because multilabel classification captures the inconsistency
and co-occurrence dependency of meter measurements.

V. CONCLUSION

In this article, we have formulated the locational detec-
tion problem of FDIA as a multilabel classification problem
and designed a BDD-CNN architecture as a multilabel classi-
fier. The standard BDD detector is to estimate the quality of
the real-time measurement data and used to remove the low-
quality data. The CNN is to capture the inconsistency and
co-occurrence dependency introduced by FDIA. The mech-
anism is model-free in the sense that the architecture does
not depend on any assumed attack model, and is cost-friendly
in the sense that the architecture is built on the existing
BDD that requires no alternation of the current BDD system
and the runtime of the detection process is only hundreds
of microseconds on a household computer. Moreover, we
have carried out extensive simulations in the IEEE 14- and
118-bus power systems to demonstrate the practicability. In
particular, we have shown that DLLD can perform locational
detection for the whole bus system under various noise and
attack conditions. In addition, we also have demonstrated
that the presence-detection accuracy can be further improved
through multilabel classification formulation, and thus the

achieved presence-detection accuracy is better than that of the
state-of-the-art benchmarks.
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